Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study

Optimal designs are used to determine the best conditions where an experiment should be performed to obtain certain statistical properties. In heteroscedastic nonlinear models where variance is a function of the mean, the optimality criterion depends on the choice of a local value for the model para...

Full description

Autores:
Patiño-Bustamante, Catalina
López-Ríos, Víctor
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/17664
Acceso en línea:
http://hdl.handle.net/10784/17664
Palabra clave:
Optimal designs
Information matrix
Equivalence theorem
Prior distribution
Heteroscedastic models
Diseños óptimos
Matriz de información
Teorema de equivalencia
Distribuciones a priori
Modelos heteroscedásticos
Rights
License
Copyright © 2020 Catalina Patiño-Bustamante, Víctor López-Ríos
id REPOEAFIT2_6e8a7ed8386adba9c6e423703179e998
oai_identifier_str oai:repository.eafit.edu.co:10784/17664
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study
dc.title.spa.fl_str_mv Diseños Dπ-óptimos para modelos no lineales heteroscedásticos: un estudio de robustez
title Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study
spellingShingle Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study
Optimal designs
Information matrix
Equivalence theorem
Prior distribution
Heteroscedastic models
Diseños óptimos
Matriz de información
Teorema de equivalencia
Distribuciones a priori
Modelos heteroscedásticos
title_short Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study
title_full Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study
title_fullStr Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study
title_full_unstemmed Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study
title_sort Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study
dc.creator.fl_str_mv Patiño-Bustamante, Catalina
López-Ríos, Víctor
dc.contributor.author.spa.fl_str_mv Patiño-Bustamante, Catalina
López-Ríos, Víctor
dc.contributor.affiliation.spa.fl_str_mv Universidad Nacional de Colombia
dc.subject.keyword.eng.fl_str_mv Optimal designs
Information matrix
Equivalence theorem
Prior distribution
Heteroscedastic models
topic Optimal designs
Information matrix
Equivalence theorem
Prior distribution
Heteroscedastic models
Diseños óptimos
Matriz de información
Teorema de equivalencia
Distribuciones a priori
Modelos heteroscedásticos
dc.subject.keyword.spa.fl_str_mv Diseños óptimos
Matriz de información
Teorema de equivalencia
Distribuciones a priori
Modelos heteroscedásticos
description Optimal designs are used to determine the best conditions where an experiment should be performed to obtain certain statistical properties. In heteroscedastic nonlinear models where variance is a function of the mean, the optimality criterion depends on the choice of a local value for the model parameters. One way to avoid this dependency is to consider an a priori distribution for the vector of model parameters and incorporate it into the optimality criterion to be optimized. This paper considers D-optimal designs in heteroscedastic nonlinear models when a prior distribution associated with the model parameters is incorporated. The equivalence theorem is extended by considering the effect of the prior distribution. A methodology for the construction of discrete and continuous prior distributions is proposed. It is shown, with an example, how optimal designs can be found from the constructed distributions with a greater number of experimental points than those obtained with a local value. The efficiency of the designs found is very competitive compared to the optimal local designs. Additionally, prior distributions of a scale family are considered, and it is shown that the designs found are robust to the choice of the prior distribution chosen from this family.
publishDate 2020
dc.date.available.none.fl_str_mv 2020-09-04T16:42:35Z
dc.date.issued.none.fl_str_mv 2020-06-19
dc.date.accessioned.none.fl_str_mv 2020-09-04T16:42:35Z
dc.date.none.fl_str_mv 2020-06-19
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/17664
identifier_str_mv 1794-9165
url http://hdl.handle.net/10784/17664
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5373
dc.relation.uri.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5373
dc.rights.eng.fl_str_mv Copyright © 2020 Catalina Patiño-Bustamante, Víctor López-Ríos
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright © 2020 Catalina Patiño-Bustamante, Víctor López-Ríos
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia, Vol. 16, Núm. 31 (2020)
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/0457d142-a5a7-43c9-8848-b1b935131d42/download
https://repository.eafit.edu.co/bitstreams/1358c8e5-58c3-475f-aa6c-3918e61da124/download
https://repository.eafit.edu.co/bitstreams/51b1f47f-be4e-4756-a4c5-687396e412ea/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
ff2e2c29447c82cd2b34691240cec345
5c1a80f3763aed753c0873d9e25022a4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110344747941888
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2020-06-192020-09-04T16:42:35Z2020-06-192020-09-04T16:42:35Z1794-9165http://hdl.handle.net/10784/17664Optimal designs are used to determine the best conditions where an experiment should be performed to obtain certain statistical properties. In heteroscedastic nonlinear models where variance is a function of the mean, the optimality criterion depends on the choice of a local value for the model parameters. One way to avoid this dependency is to consider an a priori distribution for the vector of model parameters and incorporate it into the optimality criterion to be optimized. This paper considers D-optimal designs in heteroscedastic nonlinear models when a prior distribution associated with the model parameters is incorporated. The equivalence theorem is extended by considering the effect of the prior distribution. A methodology for the construction of discrete and continuous prior distributions is proposed. It is shown, with an example, how optimal designs can be found from the constructed distributions with a greater number of experimental points than those obtained with a local value. The efficiency of the designs found is very competitive compared to the optimal local designs. Additionally, prior distributions of a scale family are considered, and it is shown that the designs found are robust to the choice of the prior distribution chosen from this family.Los diseños óptimos son utilizados para determinar las mejores condiciones donde se debe realizar un experimento para obtener ciertas propiedades estadísticas. En los modelos no lineales heteroscedásticos donde la varianza es una función de la media, el criterio de optimalidad depende de la elección de un valor local para los parámetros del modelo. Una forma de evitar esta dependencia es considerar una distribución a priori para el vector de parámetros del modelo e incorporarla en el criterio de optimalidad que se va a optimizar. En este artículo se consideran diseños D-óptimos en modelos no lineales heteroscedásticos cuando se incorpora una distribución a priori asociada a los parámetros del modelo. Se extiende el teorema de equivalencia al considerar el efecto de la distribución a priori. Se propone una metodología para la construcción de distribuciones a priori discretas y continuas. Se muestra, con un ejemplo, cómo a partir de las distribuciones construidas se pueden encontrar diseños óptimos con mayor número de puntos experimentales que los obtenidos con un valor local. La eficiencia de los diseños hallados es muy competitiva comparada con los diseños óptimos locales. Adicionalmente se consideran distribuciones a priori de una familia de escala, y se muestra que los diseños hallados son robustos a la elección de la distribución a priori elegida de esta familia.application/pdfspaUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5373https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5373Copyright © 2020 Catalina Patiño-Bustamante, Víctor López-RíosAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol. 16, Núm. 31 (2020)Dπ-optimal designs for heteroscedastic nonlinear models: A robustness studyDiseños Dπ-óptimos para modelos no lineales heteroscedásticos: un estudio de robustezarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Optimal designsInformation matrixEquivalence theoremPrior distributionHeteroscedastic modelsDiseños óptimosMatriz de informaciónTeorema de equivalenciaDistribuciones a prioriModelos heteroscedásticosPatiño-Bustamante, CatalinaLópez-Ríos, VíctorUniversidad Nacional de ColombiaIngeniería y Ciencia163177101THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/0457d142-a5a7-43c9-8848-b1b935131d42/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINALdocument - 2020-09-21T085348.338.pdfdocument - 2020-09-21T085348.338.pdfTexto completo PDFapplication/pdf609646https://repository.eafit.edu.co/bitstreams/1358c8e5-58c3-475f-aa6c-3918e61da124/downloadff2e2c29447c82cd2b34691240cec345MD52articulo - copia (4).htmlarticulo - copia (4).htmlTexto completo HTMLtext/html375https://repository.eafit.edu.co/bitstreams/51b1f47f-be4e-4756-a4c5-687396e412ea/download5c1a80f3763aed753c0873d9e25022a4MD5310784/17664oai:repository.eafit.edu.co:10784/176642020-09-21 08:55:34.645open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co