Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study
Optimal designs are used to determine the best conditions where an experiment should be performed to obtain certain statistical properties. In heteroscedastic nonlinear models where variance is a function of the mean, the optimality criterion depends on the choice of a local value for the model para...
- Autores:
-
Patiño-Bustamante, Catalina
López-Ríos, Víctor
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/17664
- Acceso en línea:
- http://hdl.handle.net/10784/17664
- Palabra clave:
- Optimal designs
Information matrix
Equivalence theorem
Prior distribution
Heteroscedastic models
Diseños óptimos
Matriz de información
Teorema de equivalencia
Distribuciones a priori
Modelos heteroscedásticos
- Rights
- License
- Copyright © 2020 Catalina Patiño-Bustamante, Víctor López-Ríos
id |
REPOEAFIT2_6e8a7ed8386adba9c6e423703179e998 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/17664 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study |
dc.title.spa.fl_str_mv |
Diseños Dπ-óptimos para modelos no lineales heteroscedásticos: un estudio de robustez |
title |
Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study |
spellingShingle |
Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study Optimal designs Information matrix Equivalence theorem Prior distribution Heteroscedastic models Diseños óptimos Matriz de información Teorema de equivalencia Distribuciones a priori Modelos heteroscedásticos |
title_short |
Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study |
title_full |
Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study |
title_fullStr |
Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study |
title_full_unstemmed |
Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study |
title_sort |
Dπ-optimal designs for heteroscedastic nonlinear models: A robustness study |
dc.creator.fl_str_mv |
Patiño-Bustamante, Catalina López-Ríos, Víctor |
dc.contributor.author.spa.fl_str_mv |
Patiño-Bustamante, Catalina López-Ríos, Víctor |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.subject.keyword.eng.fl_str_mv |
Optimal designs Information matrix Equivalence theorem Prior distribution Heteroscedastic models |
topic |
Optimal designs Information matrix Equivalence theorem Prior distribution Heteroscedastic models Diseños óptimos Matriz de información Teorema de equivalencia Distribuciones a priori Modelos heteroscedásticos |
dc.subject.keyword.spa.fl_str_mv |
Diseños óptimos Matriz de información Teorema de equivalencia Distribuciones a priori Modelos heteroscedásticos |
description |
Optimal designs are used to determine the best conditions where an experiment should be performed to obtain certain statistical properties. In heteroscedastic nonlinear models where variance is a function of the mean, the optimality criterion depends on the choice of a local value for the model parameters. One way to avoid this dependency is to consider an a priori distribution for the vector of model parameters and incorporate it into the optimality criterion to be optimized. This paper considers D-optimal designs in heteroscedastic nonlinear models when a prior distribution associated with the model parameters is incorporated. The equivalence theorem is extended by considering the effect of the prior distribution. A methodology for the construction of discrete and continuous prior distributions is proposed. It is shown, with an example, how optimal designs can be found from the constructed distributions with a greater number of experimental points than those obtained with a local value. The efficiency of the designs found is very competitive compared to the optimal local designs. Additionally, prior distributions of a scale family are considered, and it is shown that the designs found are robust to the choice of the prior distribution chosen from this family. |
publishDate |
2020 |
dc.date.available.none.fl_str_mv |
2020-09-04T16:42:35Z |
dc.date.issued.none.fl_str_mv |
2020-06-19 |
dc.date.accessioned.none.fl_str_mv |
2020-09-04T16:42:35Z |
dc.date.none.fl_str_mv |
2020-06-19 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/17664 |
identifier_str_mv |
1794-9165 |
url |
http://hdl.handle.net/10784/17664 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.isversionof.none.fl_str_mv |
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5373 |
dc.relation.uri.none.fl_str_mv |
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5373 |
dc.rights.eng.fl_str_mv |
Copyright © 2020 Catalina Patiño-Bustamante, Víctor López-Ríos |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright © 2020 Catalina Patiño-Bustamante, Víctor López-Ríos Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia, Vol. 16, Núm. 31 (2020) |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/0457d142-a5a7-43c9-8848-b1b935131d42/download https://repository.eafit.edu.co/bitstreams/1358c8e5-58c3-475f-aa6c-3918e61da124/download https://repository.eafit.edu.co/bitstreams/51b1f47f-be4e-4756-a4c5-687396e412ea/download |
bitstream.checksum.fl_str_mv |
da9b21a5c7e00c7f1127cef8e97035e0 ff2e2c29447c82cd2b34691240cec345 5c1a80f3763aed753c0873d9e25022a4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110344747941888 |
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2020-06-192020-09-04T16:42:35Z2020-06-192020-09-04T16:42:35Z1794-9165http://hdl.handle.net/10784/17664Optimal designs are used to determine the best conditions where an experiment should be performed to obtain certain statistical properties. In heteroscedastic nonlinear models where variance is a function of the mean, the optimality criterion depends on the choice of a local value for the model parameters. One way to avoid this dependency is to consider an a priori distribution for the vector of model parameters and incorporate it into the optimality criterion to be optimized. This paper considers D-optimal designs in heteroscedastic nonlinear models when a prior distribution associated with the model parameters is incorporated. The equivalence theorem is extended by considering the effect of the prior distribution. A methodology for the construction of discrete and continuous prior distributions is proposed. It is shown, with an example, how optimal designs can be found from the constructed distributions with a greater number of experimental points than those obtained with a local value. The efficiency of the designs found is very competitive compared to the optimal local designs. Additionally, prior distributions of a scale family are considered, and it is shown that the designs found are robust to the choice of the prior distribution chosen from this family.Los diseños óptimos son utilizados para determinar las mejores condiciones donde se debe realizar un experimento para obtener ciertas propiedades estadísticas. En los modelos no lineales heteroscedásticos donde la varianza es una función de la media, el criterio de optimalidad depende de la elección de un valor local para los parámetros del modelo. Una forma de evitar esta dependencia es considerar una distribución a priori para el vector de parámetros del modelo e incorporarla en el criterio de optimalidad que se va a optimizar. En este artículo se consideran diseños D-óptimos en modelos no lineales heteroscedásticos cuando se incorpora una distribución a priori asociada a los parámetros del modelo. Se extiende el teorema de equivalencia al considerar el efecto de la distribución a priori. Se propone una metodología para la construcción de distribuciones a priori discretas y continuas. Se muestra, con un ejemplo, cómo a partir de las distribuciones construidas se pueden encontrar diseños óptimos con mayor número de puntos experimentales que los obtenidos con un valor local. La eficiencia de los diseños hallados es muy competitiva comparada con los diseños óptimos locales. Adicionalmente se consideran distribuciones a priori de una familia de escala, y se muestra que los diseños hallados son robustos a la elección de la distribución a priori elegida de esta familia.application/pdfspaUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5373https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5373Copyright © 2020 Catalina Patiño-Bustamante, Víctor López-RíosAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol. 16, Núm. 31 (2020)Dπ-optimal designs for heteroscedastic nonlinear models: A robustness studyDiseños Dπ-óptimos para modelos no lineales heteroscedásticos: un estudio de robustezarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Optimal designsInformation matrixEquivalence theoremPrior distributionHeteroscedastic modelsDiseños óptimosMatriz de informaciónTeorema de equivalenciaDistribuciones a prioriModelos heteroscedásticosPatiño-Bustamante, CatalinaLópez-Ríos, VíctorUniversidad Nacional de ColombiaIngeniería y Ciencia163177101THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/0457d142-a5a7-43c9-8848-b1b935131d42/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINALdocument - 2020-09-21T085348.338.pdfdocument - 2020-09-21T085348.338.pdfTexto completo PDFapplication/pdf609646https://repository.eafit.edu.co/bitstreams/1358c8e5-58c3-475f-aa6c-3918e61da124/downloadff2e2c29447c82cd2b34691240cec345MD52articulo - copia (4).htmlarticulo - copia (4).htmlTexto completo HTMLtext/html375https://repository.eafit.edu.co/bitstreams/51b1f47f-be4e-4756-a4c5-687396e412ea/download5c1a80f3763aed753c0873d9e25022a4MD5310784/17664oai:repository.eafit.edu.co:10784/176642020-09-21 08:55:34.645open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |