Regresión lineal con errores no normales: secante hiperbólica generalizada
This paper presents a study of the model of linear regression of the type y = Θx + e, where the error has generalized hyperbolic secant distribution (GHS) -- The method to estimate the parameters are obtained by setting maximum likelihood expressing the non-linear equations in linear form (modified...
- Autores:
-
Burbano Moreno, Álvaro Alexander
Melo Martinez, Oscar Orlando
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/5290
- Acceso en línea:
- http://hdl.handle.net/10784/5290
- Palabra clave:
- Ecuaciones no lineales
Funciones de verosimilitud
FUNCIONES EXPONENCIALES
MÍNIMOS CUADRADOS
ESTADÍSTICA MATEMÁTICA
ANÁLISIS DE REGRESIÓN
Functions, exponential
Least squares
Mathematical statistics
Regression analysis
- Rights
- License
- Copyright (c) 2015 Ingeniería y Ciencia – ing.cienc.
Summary: | This paper presents a study of the model of linear regression of the type y = Θx + e, where the error has generalized hyperbolic secant distribution (GHS) -- The method to estimate the parameters are obtained by setting maximum likelihood expressing the non-linear equations in linear form (modified likelihood) -- The resulting estimators are analytical expressions in terms of values of the sample and, therefore, are easily calculables -- Through the application of various types of data, the methodology described above is shown, and plausible models against the true underlying distributions of data are |
---|