Standard Error Correction in Two-Stage Optimization Models: A Quasi-Maximum Likelihood Estimation Approach

Following Wooldridge (2014), we discuss and implement in Stata an efficient maximum likelihood approach to the estimation of corrected standard errors of two-stage optimization models. Specifically, we compare the robustness and efficiency of this estimate using different non-linear routines already...

Full description

Autores:
Rios-Avila, Fernando
Canavire-Bacarreza, Gustavo
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/11432
Acceso en línea:
http://hdl.handle.net/10784/11432
Palabra clave:
Maximum Likelihood Estimation
non-linear models
endogeneity
two-step models
standard errors
Rights
License
Acceso abierto