Meta heurística de optimización mono-objetivo continua de alta dimensionalidad para el entrenamiento de una máquina de aprendizaje extremo

Una máquina de aprendizaje extremo (ELM) realiza el entrenamiento de una Red Neuronal de una sola Capa que se propaga hacia adelante (SLFN) en menor tiempo que el algoritmo de propagación hacia atrás. Una ELM define los pesos de entrada y sesgos de una SLFN con valores aleatorios, lo cual ocasiona q...

Full description

Autores:
Sotelo Montero, David Fernando
Velásquez Garzón, Angie Daniela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad del Cauca
Repositorio:
Repositorio Unicauca
Idioma:
spa
OAI Identifier:
oai:repositorio.unicauca.edu.co:123456789/1755
Acceso en línea:
http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1755
Palabra clave:
Meta heurística
Mono-objetivo
Problemas continuos
Alta dimensionalidad
Entrenamiento
Aprendizaje extremo
MOS
DECC-G
IHDELS
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOCAUCA2_371869cadc590685edcd353a6ed706d9
oai_identifier_str oai:repositorio.unicauca.edu.co:123456789/1755
network_acronym_str REPOCAUCA2
network_name_str Repositorio Unicauca
repository_id_str
dc.title.spa.fl_str_mv Meta heurística de optimización mono-objetivo continua de alta dimensionalidad para el entrenamiento de una máquina de aprendizaje extremo
title Meta heurística de optimización mono-objetivo continua de alta dimensionalidad para el entrenamiento de una máquina de aprendizaje extremo
spellingShingle Meta heurística de optimización mono-objetivo continua de alta dimensionalidad para el entrenamiento de una máquina de aprendizaje extremo
Meta heurística
Mono-objetivo
Problemas continuos
Alta dimensionalidad
Entrenamiento
Aprendizaje extremo
MOS
DECC-G
IHDELS
title_short Meta heurística de optimización mono-objetivo continua de alta dimensionalidad para el entrenamiento de una máquina de aprendizaje extremo
title_full Meta heurística de optimización mono-objetivo continua de alta dimensionalidad para el entrenamiento de una máquina de aprendizaje extremo
title_fullStr Meta heurística de optimización mono-objetivo continua de alta dimensionalidad para el entrenamiento de una máquina de aprendizaje extremo
title_full_unstemmed Meta heurística de optimización mono-objetivo continua de alta dimensionalidad para el entrenamiento de una máquina de aprendizaje extremo
title_sort Meta heurística de optimización mono-objetivo continua de alta dimensionalidad para el entrenamiento de una máquina de aprendizaje extremo
dc.creator.fl_str_mv Sotelo Montero, David Fernando
Velásquez Garzón, Angie Daniela
dc.contributor.author.none.fl_str_mv Sotelo Montero, David Fernando
Velásquez Garzón, Angie Daniela
dc.subject.spa.fl_str_mv Meta heurística
Mono-objetivo
Problemas continuos
Alta dimensionalidad
Entrenamiento
Aprendizaje extremo
topic Meta heurística
Mono-objetivo
Problemas continuos
Alta dimensionalidad
Entrenamiento
Aprendizaje extremo
MOS
DECC-G
IHDELS
dc.subject.eng.fl_str_mv MOS
DECC-G
IHDELS
description Una máquina de aprendizaje extremo (ELM) realiza el entrenamiento de una Red Neuronal de una sola Capa que se propaga hacia adelante (SLFN) en menor tiempo que el algoritmo de propagación hacia atrás. Una ELM define los pesos de entrada y sesgos de una SLFN con valores aleatorios, lo cual ocasiona que su desempeño disminuya. El presente trabajo de investigación centra sus esfuerzos en definir cuál de tres (3) de los mejores algoritmos meta-heurísticos mono-objetivo especializados en problemas de alta dimensionalidad de la competencia 2015 IEEE CEC (Congress on Evolutionary Computation), a saber: Coevolución cooperativa basada en evolución diferencial (DECC-G), Muestreo múltiple de descendientes (MOS) e Hibridación iterativa de evolución diferencial (DE) con búsqueda local con reinicio (IHDELS); consigue mejores resultados en exactitud o tiempo de una ELM. La evaluación de los algoritmos se realizó en conjuntos de datos de regresión y clasificación reconocidos por la comunidad académica, utilizando como modelos de validación el método de retención y validación cruzada. Los resultados arrojan a IHDELS como la mejor meta-heurística de optimización para el problema de la ELM entre los algoritmos evaluados, con un ranking de 3.5526 al aplicar las pruebas no paramétricas de Friedman con el método de retención en problemas de clasificación. Superando los resultados obtenidos por el algoritmo del estado del arte Memético-ELM (M-ELM) el cual obtuvo un ranking de 6.3289. Generando así nuevo conocimiento en el área de la optimización del entrenamiento de redes neuronales que utilizan la ELM.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-03
dc.date.accessioned.none.fl_str_mv 2019-12-02T20:37:03Z
dc.date.available.none.fl_str_mv 2019-12-02T20:37:03Z
dc.type.spa.fl_str_mv Trabajos de grado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1755
dc.identifier.instname.none.fl_str_mv
dc.identifier.reponame.none.fl_str_mv
dc.identifier.repourl.none.fl_str_mv
url http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1755
identifier_str_mv
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Universidad del Cauca
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica y Telecomunicaciones 
dc.publisher.program.spa.fl_str_mv Ingeniería de Sistemas
institution Universidad del Cauca
bitstream.url.fl_str_mv http://repositorio.unicauca.edu.co/bitstream/123456789/1755/1/META%20HEUR%c3%8dSTICA%20DE%20OPTIMIZACI%c3%93N%20MONO-OBJETIVO%20CONTINUA%20DE%20ALTA%20DIMENSIONALIDAD%20PARA%20EL%20ENTRENAMIENTO.pdf
http://repositorio.unicauca.edu.co/bitstream/123456789/1755/2/Anexos.pdf
http://repositorio.unicauca.edu.co/bitstream/123456789/1755/3/license.txt
bitstream.checksum.fl_str_mv 315ba9e8c3bcab9b322a08698d6a9823
b372aab286638bfa21ad761a274d7d3a
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Dspace - Universidad del Cauca
repository.mail.fl_str_mv biblios@unicauca.edu.co
_version_ 1818113064513306624
spelling Sotelo Montero, David FernandoVelásquez Garzón, Angie Daniela2019-12-02T20:37:03Z2019-12-02T20:37:03Z2018-03http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1755Una máquina de aprendizaje extremo (ELM) realiza el entrenamiento de una Red Neuronal de una sola Capa que se propaga hacia adelante (SLFN) en menor tiempo que el algoritmo de propagación hacia atrás. Una ELM define los pesos de entrada y sesgos de una SLFN con valores aleatorios, lo cual ocasiona que su desempeño disminuya. El presente trabajo de investigación centra sus esfuerzos en definir cuál de tres (3) de los mejores algoritmos meta-heurísticos mono-objetivo especializados en problemas de alta dimensionalidad de la competencia 2015 IEEE CEC (Congress on Evolutionary Computation), a saber: Coevolución cooperativa basada en evolución diferencial (DECC-G), Muestreo múltiple de descendientes (MOS) e Hibridación iterativa de evolución diferencial (DE) con búsqueda local con reinicio (IHDELS); consigue mejores resultados en exactitud o tiempo de una ELM. La evaluación de los algoritmos se realizó en conjuntos de datos de regresión y clasificación reconocidos por la comunidad académica, utilizando como modelos de validación el método de retención y validación cruzada. Los resultados arrojan a IHDELS como la mejor meta-heurística de optimización para el problema de la ELM entre los algoritmos evaluados, con un ranking de 3.5526 al aplicar las pruebas no paramétricas de Friedman con el método de retención en problemas de clasificación. Superando los resultados obtenidos por el algoritmo del estado del arte Memético-ELM (M-ELM) el cual obtuvo un ranking de 6.3289. Generando así nuevo conocimiento en el área de la optimización del entrenamiento de redes neuronales que utilizan la ELM.spaUniversidad del CaucaFacultad de Ingeniería Electrónica y Telecomunicaciones Ingeniería de Sistemashttps://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Meta heurísticaMono-objetivoProblemas continuosAlta dimensionalidadEntrenamientoAprendizaje extremoMOSDECC-GIHDELSMeta heurística de optimización mono-objetivo continua de alta dimensionalidad para el entrenamiento de una máquina de aprendizaje extremoTrabajos de gradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINALMETA HEURÍSTICA DE OPTIMIZACIÓN MONO-OBJETIVO CONTINUA DE ALTA DIMENSIONALIDAD PARA EL ENTRENAMIENTO.pdfMETA HEURÍSTICA DE OPTIMIZACIÓN MONO-OBJETIVO CONTINUA DE ALTA DIMENSIONALIDAD PARA EL ENTRENAMIENTO.pdfapplication/pdf1860094http://repositorio.unicauca.edu.co/bitstream/123456789/1755/1/META%20HEUR%c3%8dSTICA%20DE%20OPTIMIZACI%c3%93N%20MONO-OBJETIVO%20CONTINUA%20DE%20ALTA%20DIMENSIONALIDAD%20PARA%20EL%20ENTRENAMIENTO.pdf315ba9e8c3bcab9b322a08698d6a9823MD51Anexos.pdfAnexos.pdfapplication/pdf803408http://repositorio.unicauca.edu.co/bitstream/123456789/1755/2/Anexos.pdfb372aab286638bfa21ad761a274d7d3aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.unicauca.edu.co/bitstream/123456789/1755/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53123456789/1755oai:repositorio.unicauca.edu.co:123456789/17552021-05-28 09:38:02.544Dspace - Universidad del Caucabiblios@unicauca.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=