Detección en tiempo real de fibrilación auricular en computador de placa reducida

El desarrollo de dispositivos portables, que permita la detección en tiempo real de fibrilación auricular, requiere la implementación de algoritmos de reconocimiento automático de patrones con la metodología adecuada para su ejecución en sistemas embebidos. En el presente artículo se expone la imple...

Full description

Autores:
Maya Gonzalez, Juan Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/5180
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5180
https://doi.org/10.24050/reia.v19i38.1565
Palabra clave:
Atrial fibrillation
artificial neural network (ANN)
hybrid classifier
k-nearest neighbors algorithm (KNN)
single-board computer
support vector machine (SVM)
static wavelet transform
Computador de placa reducida
Fibrilación auricular
K vecinos más cercanos (KNN)
red neuronal artificial (ANN)
máquina de soporte vectorial (SVM)
Transformada Wavelet Estacionaria
Rights
openAccess
License
Revista EIA - 2022
Description
Summary:El desarrollo de dispositivos portables, que permita la detección en tiempo real de fibrilación auricular, requiere la implementación de algoritmos de reconocimiento automático de patrones con la metodología adecuada para su ejecución en sistemas embebidos. En el presente artículo se expone la implementación de una red neuronal artificial (ANN), una máquina de soporte vectorial (SVM) y un algoritmo de K vecinos más cercanos (KNN) en un computador de placa reducida para así comparar su desempeño en cuanto a la capacidad de detección de esta arritmia y el tiempo de respuesta asociado en su ejecución en tiempo real. La base de datos MIT-BIH AFIB es usada para el entrenamiento y validación de los algoritmos previa extracción de parámetros asociados a la transformada wavelet estacionaria. Se encontraron resultados entre el 92% y 97% para la sensibilidad y especificidad de los algoritmos mencionados y tiempos de respuesta variados entre 6 s y 7,1 s