Grow the pie or have it? Using machine learning for impact heterogeneity in the Ultra-poor Graduation Model
29 páginas
- Autores:
-
Chowdhury, Reajul
Ceballos-Sierra, Federico
Sulaiman, Munshi
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eia.edu.co:11190/3382
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/3382
- Palabra clave:
- Ultra-poor
Impact heterogeneity
Machine Learning
Bangladesh
- Rights
- openAccess
- License
- Derechos Reservados - Universidad EIA, 2021
id |
REIA2_1b6924172482e3169445332cee5b4ad8 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/3382 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Grow the pie or have it? Using machine learning for impact heterogeneity in the Ultra-poor Graduation Model |
title |
Grow the pie or have it? Using machine learning for impact heterogeneity in the Ultra-poor Graduation Model |
spellingShingle |
Grow the pie or have it? Using machine learning for impact heterogeneity in the Ultra-poor Graduation Model Ultra-poor Impact heterogeneity Machine Learning Bangladesh |
title_short |
Grow the pie or have it? Using machine learning for impact heterogeneity in the Ultra-poor Graduation Model |
title_full |
Grow the pie or have it? Using machine learning for impact heterogeneity in the Ultra-poor Graduation Model |
title_fullStr |
Grow the pie or have it? Using machine learning for impact heterogeneity in the Ultra-poor Graduation Model |
title_full_unstemmed |
Grow the pie or have it? Using machine learning for impact heterogeneity in the Ultra-poor Graduation Model |
title_sort |
Grow the pie or have it? Using machine learning for impact heterogeneity in the Ultra-poor Graduation Model |
dc.creator.fl_str_mv |
Chowdhury, Reajul Ceballos-Sierra, Federico Sulaiman, Munshi |
dc.contributor.author.none.fl_str_mv |
Chowdhury, Reajul Ceballos-Sierra, Federico Sulaiman, Munshi |
dc.subject.proposal.eng.fl_str_mv |
Ultra-poor Impact heterogeneity Machine Learning Bangladesh |
topic |
Ultra-poor Impact heterogeneity Machine Learning Bangladesh |
description |
29 páginas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-12T15:06:03Z |
dc.date.available.none.fl_str_mv |
2021-07-12T15:06:03Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/WP |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/3382 |
url |
https://repository.eia.edu.co/handle/11190/3382 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad EIA, 2021 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Derechos Reservados - Universidad EIA, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad EIA |
dc.publisher.place.spa.fl_str_mv |
Envigado (Antioquia, Colombia) |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/9484518a-e913-4060-8941-9c6086131f17/download https://repository.eia.edu.co/bitstreams/39c22242-d43d-4198-952c-53e678bdd1d3/download https://repository.eia.edu.co/bitstreams/95634cbc-9f6a-498d-98bc-5db69a13384c/download https://repository.eia.edu.co/bitstreams/f95ba1c8-c27f-4b4b-9bfa-5a777edb9c12/download |
bitstream.checksum.fl_str_mv |
da9276a8e06ed571bb7fc7c7186cd8fe 696d4bdf000d40cc88b3270f1c9b4f8e fe97ef802ebaf60d119278cb62292f34 5ba4aef2fff89ab568fabd68e0084d4f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100885624586240 |
spelling |
Chowdhury, Reajulf2380e6430d6e5c415e4758b115666a8Ceballos-Sierra, Federicoe98a4684096f95fd698ea306b276844eSulaiman, Munshi0cc494579965fc3f065c2b75e1e975856002021-07-12T15:06:03Z2021-07-12T15:06:03Z2021https://repository.eia.edu.co/handle/11190/338229 páginasABSTRACT: Anti-poverty interventions often face a trade-off between immediate reduction in poverty, measured by consumption, and building assets for longer-term gains. An “Ultra-poor Graduation” model, found effective on both dimensions in several rigorous studies, generally leans towards asset building. By using data from a large-scale RCT in Bangladesh, we find significant variation in impact on assets where the top quintile gainers experience asset growth of 344% while asset growth is only 192% for the bottom quintile. Heterogeneity in impact on household expenditures is found to be present but of lower magnitude than that of assets. Importantly, the machine learning techniques we apply reveal contrasts in characteristics of beneficiaries who made the most in assets vs. consumption. The results identify beneficiary characteristics that can be used in targeting households either to maximize impact on the desired dimension and/or to customize interventions for balancing the asset and consumption trade-offapplication/pdfengUniversidad EIAEnvigado (Antioquia, Colombia)Derechos Reservados - Universidad EIA, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Grow the pie or have it? Using machine learning for impact heterogeneity in the Ultra-poor Graduation ModelDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/WPhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8042Ultra-poorImpact heterogeneityMachine LearningBangladeshPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-82515https://repository.eia.edu.co/bitstreams/9484518a-e913-4060-8941-9c6086131f17/downloadda9276a8e06ed571bb7fc7c7186cd8feMD52ORIGINALGrow the pie or have it .pdfGrow the pie or have it .pdfDocumento de trabajoapplication/pdf1951310https://repository.eia.edu.co/bitstreams/39c22242-d43d-4198-952c-53e678bdd1d3/download696d4bdf000d40cc88b3270f1c9b4f8eMD53TEXTGrow the pie or have it .pdf.txtGrow the pie or have it .pdf.txtExtracted texttext/plain70031https://repository.eia.edu.co/bitstreams/95634cbc-9f6a-498d-98bc-5db69a13384c/downloadfe97ef802ebaf60d119278cb62292f34MD54THUMBNAILGrow the pie or have it .pdf.jpgGrow the pie or have it .pdf.jpgGenerated Thumbnailimage/jpeg11345https://repository.eia.edu.co/bitstreams/f95ba1c8-c27f-4b4b-9bfa-5a777edb9c12/download5ba4aef2fff89ab568fabd68e0084d4fMD5511190/3382oai:repository.eia.edu.co:11190/33822023-07-25 16:58:45.716https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad EIA, 2021open.accesshttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.comICAgICAgICAgICAgICAgICAgICAgICAgPGNlbnRlcj5BVklTTyBERSBQUklWQUNJREFEPC9jZW50ZXI+CgpMYSBFc2N1ZWxhIGRlIEluZ2VuaWVyw61hIGRlIEFudGlvcXVpYSBhIHRyYXbDqXMgZGUgZXN0ZSBhdmlzbywgaW5mb3JtYSBhIGxvcyB0aXR1bGFyZXMgZGUgZGF0b3MgcGVyc29uYWxlcyBxdWUgc2UgZW5jdWVudHJlbiBlbiBzdXMgYmFzZXMgZGUgZGF0b3MgcXVlIGxhcyBwb2zDrXRpY2FzIGRlIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMgbGEgRUlBIHNvbjoKCkFsIHRpdHVsYXIgZGUgbG9zIGRhdG9zIHBlcnNvbmFsZXMgZW4gdHJhdGFtaWVudG8sIHNlIGxlIHJlc3BldGFyw6FuIHN1cyBkZXJlY2hvcyBhIGNvbm9jZXIgw61udGVncmFtZW50ZSB5IGRlIGZvcm1hIGdyYXR1aXRhIHN1cyBkYXRvcyBwZXJzb25hbGVzLCBhc8OtIGNvbW8gYSBhY3R1YWxpemFybG9zIHkgcmVjdGlmaWNhcmxvcyBmcmVudGUgYSBsYSBFSUEgbyBsb3MgZW5jYXJnYWRvcyBkZWwgdHJhdGFtaWVudG8uCgpBbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIGVuIHRyYXRhbWllbnRvLCBwb2Ryw6EgY29ub2NlciBlbCB1c28gcXVlIHNlIGxlIGhhIGRhZG8gYSBzdXMgZGF0b3MgcGVyc29uYWxlcywgcHJldmlhIHNvbGljaXR1ZC4KCkVsIHRpdHVsYXIgZGUgbG9zIGRhdG9zIHBlcnNvbmFsZXMgZW4gdHJhdGFtaWVudG8sIHBvZHLDoSBzb2xpY2l0YXIgcHJ1ZWJhIGRlIGxhIGF1dG9yaXphY2nDs24gb3RvcmdhZGEgYSBsYSBFSUEuIHNhbHZvIGN1YW5kbyBleHByZXNhbWVudGUgc2UgZXhjZXB0w7plIGNvbW8gcmVxdWlzaXRvIHBhcmEgZWwgdHJhdGFtaWVudG8sIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBsZXkuCgpFbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwdWVkZSByZXZvY2FyIGxhIGF1dG9yaXphY2nDs24geSBzb2xpY2l0YXIgbGEgc3VwcmVzacOzbiBkZWwgZGF0byBjdWFuZG8gZW4gZWwgdHJhdGFtaWVudG8gbm8gc2UgcmVzcGV0ZW4gbG9zIHByaW5jaXBpb3MsIGRlcmVjaG9zIHkgZ2FyYW50w61hcyBjb25zdGl0dWNpb25hbGVzIHkgbGVnYWxlcy4gTGEgcmV2b2NhdG9yaWEgeSBzdXByZXNpw7NuIHByb2NlZGVyw6EgY3VhbmRvIGxhIFN1cGVyaW50ZW5kZW5jaWEgZGUgSW5kdXN0cmlhIHkgQ29tZXJjaW8gKFNJQykgaGF5YSBkZXRlcm1pbmFkbyBxdWUgZW4gZWwgdHJhdGFtaWVudG8sIGxhIEVTQ1VFTEEgREUgSU5HRU5JRVLDjUEgREUgQU5USU9RVUlBIGhhIGluY3VycmlkbyBlbiBjb25kdWN0YXMgY29udHJhcmlhcyBhIGVzdGEgTGV5IHkgYSBsYSBDb25zdGl0dWNpw7NuIFBvbMOtdGljYS4KClBhcmEgZWZlY3RvcyBkZSBlamVyY2VyIHN1cyBkZXJlY2hvcyBkZSBjb25vY2VyLCBhY3R1YWxpemFyLCByZWN0aWZpY2FyIHkgc3VwcmltaXIgaW5mb3JtYWNpw7NuLCByZXZvY2FyIGxhIGF1dG9yaXphY2nDs24sIGVudHJlIG90cm9zOyBlbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwb2Ryw6EgYWN1ZGlyIGEgbGEgRVNDVUVMQSBERSBJTkdFTklFUsONQSBERSBBTlRJT1FVSUEsIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIGFsIMOhcmVhIGRlIGNvbXVuaWNhY2lvbmVzLCBtZWRpYW50ZSBjb3JyZW8gZWxlY3Ryw7NuaWNvIGEgd2VibWFzdGVyQGVpYS5lZHUuY28gLgoKRW4gY2FzbyBkZSBpbmZyYWNjaW9uZXMgYSBsYSBsZXkgMTU4MSBkZSAyMDEyLCBlbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwb2Ryw6EgcHJlc2VudGFyIHF1ZWphIGFudGUgbGEgU3VwZXJpbnRlbmRlbmNpYSBkZSBJbmR1c3RyaWEgeSBDb21lcmNpbyAoU0lDKS4KCkVsIHRpdHVsYXIgc2Vyw6EgaW5mb3JtYWRvIGFjZXJjYSBkZSBsYSBubyBvYmxpZ2F0b3JpZWRhZCBkZSBsYXMgcmVzcHVlc3RhcyBhIGxhcyBwcmVndW50YXMgcXVlIGxlIHNlYW4gaGVjaGFzLCBjdWFuZG8gw6lzdGFzIHZlcnNlbiBzb2JyZSBkYXRvcyBzZW5zaWJsZXMsIHRhbGVzIGNvbW8gb3JpZ2VuIHJhY2lhbCBvIMOpdG5pY28sIG9yaWVudGFjacOzbiBwb2zDrXRpY2EsIGNvbnZpY2Npb25lcyByZWxpZ2lvc2FzICwgcGVydGVuZW5jaWEgYSBzaW5kaWNhdG9zLCBvcmdhbml6YWNpb25lcyBzb2NpYWxlcyBkZSBkZXJlY2hvcyBodW1hbm9zLCBkYXRvcyByZWxhdGl2b3MgYSBsYSBzYWx1ZCwgYSBsYSB2aWRhIHNleHVhbCB5IGRhdG9zIGJpb23DqXRyaWNvcyBvIHNvYnJlIGxvcyBkYXRvcyBkZSBsb3MgbmnDsW9zLCBuacOxYXMgeSBhZG9sZXNjZW50ZXMuCgpFbCB0aXR1bGFyIHBvZHLDoSBjb25vY2VyIG51ZXN0cmEgcG9sw610aWNhIGRlIHRyYXRhbWllbnRvLCBsb3MgZGF0b3Mgc3VzdGFuY2lhbGVzIHF1ZSBzZSBsbGVndWVuIGEgcHJvZHVjaXIgZW4gZWwgcHJlc2VudGUgYXZpc28gbyBlbiBsYXMgcG9sw610aWNhcyBkZSB0cmF0YW1pZW50bywgc2Vyw6FuIHB1YmxpY2FkYXMgZW4gbnVlc3RybyBzaXRpbyB3ZWIsIG1lZGlvIGVsZWN0csOzbmljbyBoYWJpdHVhbCBkZSBjb250YWN0byBjb24gbG9zIHRpdHVsYXJlcy4KCg== |