Advanced series decomposition with a gated recurrent unit and graph convolutional neural network for non-stationary data patterns
In this study, we present the EEG-GCN, a novel hybrid model for the prediction of time series data, adept at address ing the inherent challenges posed by the data’s complex, non-linear, and periodic nature, as well as the noise that fre quently accompanies it. This model synergizes signal decomposit...
- Autores:
-
Han, Huimin
Neira Molin, Harold
Khan, Asad
Fang, Meie
Mahmoud, Haitham A.
Mahrous Awwad, Emad
Ahmed, Bilal
Yasin Ghadi, Yazeed
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10681
- Acceso en línea:
- https://hdl.handle.net/11323/10681
https://repositorio.cuc.edu.co
- Palabra clave:
- Time series forecasting
EEMD
CEEMDAN
GCN
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)