Multinomial cross-sectional regression models to estimate and predict the determinants of academic performance: the case of auditor accountant of the Pontifical Catholic University of Valparaíso

The debate on the primary cross-curricular skills or fundamental competencies that must be improved in higher education has increased in the last few years. This is especially important in the new distant learning environments, which bring new challenges to the educational process. Econometric model...

Full description

Autores:
de la Fuente-Mella, Hanns
Campos Espinoza , Ricardo Christian
LAY, NELSON
Lameles, Omar
Pino-Moya, Mario
Ramírez Molina, Reynier Israel
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9431
Acceso en línea:
https://hdl.handle.net/11323/9431
https://doi.org/10.3390/su14159232
https://repositorio.cuc.edu.co/
Palabra clave:
Multinomial logistic regression
Academic performance
Econometric models
Rights
openAccess
License
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
id RCUC2_d2caf66cc035e221556dca8eb1fb6e07
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9431
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Multinomial cross-sectional regression models to estimate and predict the determinants of academic performance: the case of auditor accountant of the Pontifical Catholic University of Valparaíso
title Multinomial cross-sectional regression models to estimate and predict the determinants of academic performance: the case of auditor accountant of the Pontifical Catholic University of Valparaíso
spellingShingle Multinomial cross-sectional regression models to estimate and predict the determinants of academic performance: the case of auditor accountant of the Pontifical Catholic University of Valparaíso
Multinomial logistic regression
Academic performance
Econometric models
title_short Multinomial cross-sectional regression models to estimate and predict the determinants of academic performance: the case of auditor accountant of the Pontifical Catholic University of Valparaíso
title_full Multinomial cross-sectional regression models to estimate and predict the determinants of academic performance: the case of auditor accountant of the Pontifical Catholic University of Valparaíso
title_fullStr Multinomial cross-sectional regression models to estimate and predict the determinants of academic performance: the case of auditor accountant of the Pontifical Catholic University of Valparaíso
title_full_unstemmed Multinomial cross-sectional regression models to estimate and predict the determinants of academic performance: the case of auditor accountant of the Pontifical Catholic University of Valparaíso
title_sort Multinomial cross-sectional regression models to estimate and predict the determinants of academic performance: the case of auditor accountant of the Pontifical Catholic University of Valparaíso
dc.creator.fl_str_mv de la Fuente-Mella, Hanns
Campos Espinoza , Ricardo Christian
LAY, NELSON
Lameles, Omar
Pino-Moya, Mario
Ramírez Molina, Reynier Israel
dc.contributor.author.spa.fl_str_mv de la Fuente-Mella, Hanns
Campos Espinoza , Ricardo Christian
LAY, NELSON
Lameles, Omar
Pino-Moya, Mario
Ramírez Molina, Reynier Israel
dc.subject.proposal.eng.fl_str_mv Multinomial logistic regression
Academic performance
Econometric models
topic Multinomial logistic regression
Academic performance
Econometric models
description The debate on the primary cross-curricular skills or fundamental competencies that must be improved in higher education has increased in the last few years. This is especially important in the new distant learning environments, which bring new challenges to the educational process. Econometric models have been designed to explain the students’ academic performance, which has been measured using their qualifications average, the number of failed subjects, passed subjects, and withdrawn subjects, and the level of progress, among other indicators, to try to understand the influence of variables such as students’ self-esteem, reading comprehension, English proficiency level, and performance in a mathematics-related subject on the students of accountant auditor program from Pontificia Universidad Católica de Valparaiso. Students were asked to fill in a questionnaire to collect data on the psychological and pedagogical variables, while the socio-economic and socio-demographic data were collected from the university. The results have shown that the most significant variables in the development level of this skill type are socio-demographic and socio-economic characteristics. Some of the psychological and pedagogical variables that have, to a lesser degree, some influences are self-regulation in the learning process and the self-perception of anxiety levels. Lastly, some recommendations to intervene in the students’ learning process are presented with the objective of achieving a higher level of development in this type of competences.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-04T14:25:34Z
dc.date.available.none.fl_str_mv 2022-08-04T14:25:34Z
dc.date.issued.none.fl_str_mv 2022-07-28
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv de la Fuente-Mella, H.; Campos-Espinoza, R.; Lay-Raby, N.; Lamelés-Corvalán, O.; Pino-Moya, M.; Ramírez-Molina, R. Multinomial Cross-Sectional Regression Models to Estimate and Predict the Determinants of Academic Performance: The Case of Auditor Accountant of the Pontifical Catholic University of Valparaíso. Sustainability 2022, 14, 9232. https:// doi.org/10.3390/su14159232
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9431
dc.identifier.url.spa.fl_str_mv https://doi.org/10.3390/su14159232
dc.identifier.doi.spa.fl_str_mv 10.3390/su14159232
dc.identifier.eissn.spa.fl_str_mv 2071-1050
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv de la Fuente-Mella, H.; Campos-Espinoza, R.; Lay-Raby, N.; Lamelés-Corvalán, O.; Pino-Moya, M.; Ramírez-Molina, R. Multinomial Cross-Sectional Regression Models to Estimate and Predict the Determinants of Academic Performance: The Case of Auditor Accountant of the Pontifical Catholic University of Valparaíso. Sustainability 2022, 14, 9232. https:// doi.org/10.3390/su14159232
10.3390/su14159232
2071-1050
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9431
https://doi.org/10.3390/su14159232
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Sustainability
dc.relation.references.spa.fl_str_mv 1. Véliz, A.; Dorner, A.; Sandoval, S. Relación entre autoconcepto, eficacia académica y rendimiento académico en estudiantes de salud de Puerto Montt, Chile. EDUCADI 2016, 1, 97–109. [CrossRef]
2. Mushtaq, I.; Khan, S.N. Factors affecting student’s academic performance. Glob. J. Manag. Bus. Res. 2012, 12, 17–22.
3. Alamri, M.; Almaiah, M.; Al-Rahmi, W. Social Media Applications Affecting Students’ Academic Performance: A Model Developed for Sustainability in Higher Education. Sustainability 2020, 12, 6471. [CrossRef]
4. Alam, M.M.; Ahmad, N.; Naveed, Q.N.; Patel, A.; Abohashrh, M.; Khaleel, M.A. E-learning services to archive sustainable learning and academic performance: An empirical study. Sustainability 2021, 13, 2653. [CrossRef]
5. Cook, M.L. Politics of Labor Reform in Latin America: Between Flexibility and Rights; The Pennsylvania State University Press: University Park, PA, USA, 2010.
6. Lamarra, N.F. Higher Education, Quality Evaluation and Accreditation in Latin America and MERCOSUR. Eur. J. Educ. 2003, 38, 253–269. [CrossRef]
7. Rama, C. University virtualisation in Latin America. Int. J. Educ. Technol. High. Educ. 2014, 11, 32–41. [CrossRef]
8. Montané, A.; Llanes, J.; Calduch, I.; Hervás, G.; Méndez-Ulrich, J.L.; Muñoz, J. The social dimension in Higher Education. Design and implementation of an instrument for student analytics in a Latin American context. In Culture, Citizenship, Participation. Comparative Perspectives from Latin America on Inclusive Education, 1st ed.; Bon, A., Pini, M., Akkermans, H., Eds.; Pangea: Amsterdam, The Netherlands, 2019; Volume 2, pp. 133–158.
9. Lent, R.W.; Taveira, M.D.C.; Figuera, P.; Dorio, I.; Faria, S.; Gonçalves, A.M. Test of the Social Cognitive Model of Well-Being in Spanish College Students. J. Career Assess. 2016, 25, 135–143. [CrossRef]
10. Llanes, J.; Méndez-Ulrich, J.L.; Montané, A. Motivación y satisfacción académica de los estudiantes de Educación: Una visión internacional. Educ. XX1 2021, 24, 45–68.
11. Fracchia, E.; Mesquita, L.; Quiroga, L. Business Groups in Argentina, 1st ed.; Oxford University Press: New York, NY, USA, 2010.
12. Rozada, M.G.; Menendez, A. Public university in Argentina: Subsidizing the rich? Econ. Educ. Rev. 2002, 21, 341–351. [CrossRef]
13. Perales Franco, C.; McCowan, T. Rewiring higher education for the Sustainable Development Goals: The case of the In-tercultural University of Veracruz, Mexico. High. Educ. 2021, 81, 69–88. [CrossRef]
14. Gill, C.C. Education in a Changing Mexico, 1st ed.; US Office of Education, Institute of International Studies: Washington, DC, USA, 1969.
15. Laus, S.P.; Morosini, M.C. Higher Education in Brazil. In Higher Education in Latin America: The International Dimension, 1st ed.; De Wit, H., Jarmillo, C., Gacel-Ávila, J., Knight, J., Eds.; The World Bank: Washington, DC, USA, 2005; Volume 638, p. 111.
16. Schwartzman, S. Brazil: Opportunity and crisis in higher education. High. Educ. 1988, 17, 99–119. [CrossRef]
17. Berchin, I.I.; dos Santos Grando, V.; Marcon, G.A.; Corseuil, L.; de Andrade, J.B.S.O. Strategies to promote sustainability in higher education institutions: A case study of a federal institute of higher education in Brazil. Int. J. Sustain. High. Educ. 2017, 18, 1018–1038. [CrossRef]
18. Brunner, J.J. Higher Education in Chile from 1980 to 1990. Eur. J. Educ. 1993, 28, 71. [CrossRef]
19. Bernasconi, A. Private Higher Education in Chile: The New Exceptionalism. Int. High. Educ. 2003, 32, 18–19. [CrossRef]
20. Ramírez, R.I.; Villalobos, J.V.; Lay, N.D.; Herrera, B.A. Medios de comunicación para la apropiación del conocimiento en instituciones educativas. Inf. Tecnológica 2021, 32, 27–38. [CrossRef]
21. Delors, J. Los cuatro pilares de la educación. In La Educación Encierra un Tesoro. Informe a la UNESCO de la Comisión Internacional Sobre la Educación Para el Siglo XXI; Santillana/UNESCO: Madrid, Spain, 1996; Available online: https://uom.uib.cat/digitalAssets/ 221/221918_9.pdf (accessed on 8 July 2022).
22. Prasetvono, H.; Abdillah, A.; Widiyarto, T.; Srivono, H. Character-based economic learning implementation and teacher’s reinforcement on student’s affective competence in minimizing hoax. Cakrawala Pendidik. 2018, 37, 426–435.
23. Soubhi, F.Z.; Lima, L.; Talbi, M.; Knouzi, N.; Touri, B. Learning Difficulties Related of Health Status of Moroccan Students. Procedia Soc. Behav. Sci. 2015, 197, 1507–1511. [CrossRef]
24. Awan, K. Experimentation and correlates of electronic nicotine delivery system (electronic cigarettes) among university students— A cross sectional study. Saudi Dent. J. 2016, 28, 91–95. [CrossRef]
25. de la Fuente-Mella, H.; Umaña-Hermosilla, B.; Fonseca-Fuentes, M.; Elórtegui-Gómez, C. Multinomial Logistic Regression to Estimate the Financial Education and Financial Knowledge of University Students in Chile. Information 2021, 12, 379. [CrossRef]
26. Torikka, A.; Kaltiala-Heino, R.; Rimpelä, A.; Marttunen, M.; Luukkaala, T.; Rimpelä, M. Self-reported depression is increasing among socio-economically disadvantaged adolescents—Repeated cross-sectional surveys from Finland from 2000 to 2011. BMC Public Health 2014, 14, 408. [CrossRef]
27. Trinidad, M.F.; Pascual, J.L.G.; García, M.R. Perception of caring among nursing students: Results from a cross-sectional survey. Nurse Educ. Today 2019, 83, 104196. [CrossRef] [PubMed]
28. Webb, J.; Chaffer, C. The expectation performance gap in accounting education: A review of generic skills development in UK accounting degrees. Account. Educ. 2016, 25, 349–367. [CrossRef]
29. Douglas, S.; Gammie, E. An investigation into the development of non-technical skills by undergraduate accounting programmes. Account. Educ. 2019, 28, 304–332. [CrossRef]
30. Van Vught, F.A. Governmental Strategies and Innovation in Higher Education. Higher Education Policies Series, 7, 1st ed.; Kingsley: London, UK, 1989.
31. Kırkgöz, Y. The challenge of developing and maintaining curriculum innovation at higher education. Procedia Soc. Behav. Sci. 2009, 1, 73–78. [CrossRef]
32. Kemp, K.K.; Goodchild, F.M. Evaluating a major innovation in higher education: The NCGIA core curriculum in GIS. J. Geogr. High. Educ. 1992, 16, 21–35. [CrossRef]
33. Leask, B. Internationalisation, globalisation and curriculum innovation. In Researching International Pedagogies, 1st ed.; Hellstén, M., Reid, A., Eds.; Springer Dordrecht: Dordrecht, The Netherlands, 2008; pp. 9–26.
34. Fuentes, G.Y.; Moreno-Murcia, L.M.; Rincón-Tellez, D.C.; Silva-Garcia, M.B. Evaluación de las habilidades blandas en la educación superior. Form. Univ. 2021, 14, 49–60. [CrossRef]
35. Carrión-Martínez, J.J.; Fernández-Martínez, M.D.M.; Pérez-Fuentes, M.D.C.; Gázquez-Linares, J.J. Specific competencies in social work higher education in the framework of the European higher education area: The perception of future professionals in the Spanish context. Eur. J. Soc. Work 2018, 23, 43–55. [CrossRef]
36. Echeverría-Ramírez, J.A.; Mazzitelli, C. Estudio de la percepción sobre los factores institucionales que influyen en el rendimiento académico de estudiantes de la Universidad Estatal a Distancia de Costa Rica. Rev. Electrónica Educ. 2021, 25, 326–344. [CrossRef]
37. Preciado-Serrano, M.D.L.; Ángel-González, M.; Colunga-Rodríguez, C.; Vázquez-Colunga, J.C.; Esparza-Zamora, M.A.; VázquezJuárez, C.L.; Obando-Changuán, M.P. Construction and Validation of the University Academic Performance RAU Scale. Rev. Iberoam. Diagnóstico Evaluación Avaliação Psicológica (RIDEP) 2021, 60, 1–20. [CrossRef]
38. Sagredo, A.V.; Etchepare, G.C.; Mendizábal, E.A.; Wilson, C.P. Academic performance and its relationship with socioemotional variables in chilean students from vulnerable contexts. Educ. XXI 2021, 24, 375–398. [CrossRef]
39. Jiménez, M.; Pérez, F.; Gómez, P. Análisis de los factores tecnológicos sobre el rendimiento académico en una universidad pública en la Ciudad de México. Form. Univ. 2020, 13, 255–266. [CrossRef]
40. Quinapallo, X.P.L.; Yépez, M.M.M.; Corbi, R.G. Clima de aula y rendimiento académico: Apuntes en torno al contexto universitario. Rev. Venez. Gerenc. 2021, 26, 140–156. [CrossRef]
41. Sukier, H.; Ramírez Molina, R.I.; Parra, M.; Martínez, K.; Fernández, G.; Lay, N. Strategic Management of Human Talent from a Sustainable Approach. Rev. Opción 2020, 36, 929–953.
42. Matyushok, V.; Krasavina, V.; Berezin, A.; García, J.S. The global economy in technological transformation conditions: A review of modern trends. Econ. Res. Ekon. Istraživanja 2021, 34, 1471–1497. [CrossRef]
43. Glomado, E.; Zagrebaylova, Y. The Overview of Factors Contributing to the Global Economy Development, 1st ed.; Belarusian State Economic University: Minsk, Belarus, 2022.
44. Gómez, L.; Oinas, P.; Wall, R.S. Undercurrents in the world economy: Evolving global investment flows in the South. World Econ. 2021, 45, 1830–1855. [CrossRef]
45. Velasco, M.; Mumme, S.P. Environmental capacities in Latin America: A comparison of Brazil, Chile, and Mexico. Soc. Sci. J. 2021, 1–20. [CrossRef]
46. Fernández, J. Escala de Motivaciones Psicosociales, 1st ed.; Tea Ediciones: Madrid, Spain, 1987.
47. Allport, G.W.; Vernon, P.E.; Lindzey, G. Study of Values, 1st ed.; Houghton Mifflin: Boston, FL, USA, 1960.
48. Pender, N.J.; Murdaugh, C.L.; Parsons, M.A. Health Promotion in Nursing Practice, 7th ed.; Pearson: London, UK, 2006.
49. Wonderlic, E.F. Wonderlic Personnel Test; Wonderlic, Inc.: Liberty, IL, USA, 2004.
50. De Moya, M.V.; Hernández, J.A.; Hernández, J.R.; Cózar, R. Análisis de los estilos de aprendizaje y las tic en la formación personal del alumnado universitario a través del cuestionario reatic. Rev. De Investig. Educ. 2009, 29, 137–156.
51. Coopersmith, S. The Antecedents of Self-Esteem; W. H. Freeman & Co. Behavioral Science: San Francisco, CA, USA, 1967; p. 15. [CrossRef]
52. Moren, C.C.; Augant, K.C.; Labrin, B.C.; de Giorgis, R.S.; de la Fuente-Mella, H.; Fritz, P.; Saavedra, M.V.; Monckton, P.H.; Castelli, L. A quantitative analysis of the identification of personality traits in engineering students and their relation to academic performance. Stud. High. Educ. 2019, 45, 1323–1334. [CrossRef]
53. Mella, H.D.L.F.; Navarro, M.M.; Manero, C.B.; Iglesias, M.P.; Huenuman, C.G. Análisis de los determinantes del rendimiento académico. El caso de Contador Auditor de la Pontificia Universidad Católica de Valparaíso. Rev. Estud. Pedagógicos 2021, 47, 469–482. [CrossRef]
54. De La Fuente-Mella, H.; Gutiérrez, C.G.; Crawford, K.; Foschino, G.; Crawford, B.; Soto, R.; De La Barra, C.L.; Caneo, F.C.; Monfroy, E.; Becerra-Rozas, M.; et al. Analysis and Prediction of Engineering Student Behavior and Their Relation to Academic Performance Using Data Analytics Techniques. Appl. Sci. 2020, 10, 7114. [CrossRef]
55. Lawson, A.E. The Generality of Hypothetico-Deductive Reasoning: Making Scientific Thinking Explicit. Am. Biol. Teach. 2000, 62, 482–495. [CrossRef]
56. Greene, W.H. Análisis Econométrico, 3rd ed.; Prentice Hall: Madrid, Spain, 1999.
57. Coughenour, C.; Paz, A.; de la Fuente-Mella, H.; Singh, A. Multinomial logistic regression to estimate and predict perceptions of bicycle and transportation infrastructure in a sprawling metropolitan area. J. Public Health 2016, 38, e401–e408. [CrossRef] [PubMed]
58. Flores-Mendoza, C.; Ardila, R.; Gallegos, M.; Reategui-Colareta, N. General Intelligence and Socioeconomic Status as Strong Predictors of Student Performance in Latin American Schools: Evidence from PISA Items. Front. Educ. 2021, 6, 1–16. [CrossRef]
59. Murillo, F.J.; Román, M. School infrastructure and resources do matter: Analysis of the incidence of school resources on the performance of Latin American students. Sch. Eff. Sch. Improv. 2011, 22, 29–50. [CrossRef]
60. Torres-Roman, J.S.; Cruz-Avila, Y.; Suarez-Osorio, K.; Arce-Huamaní, M.; Menez-Sanchez, A.; Robalo, T.R.A.; Mejia, C.R.; Ruiz, E. Motivation towards medical career choice and academic performance in Latin American medical students: A cross-sectional study. PLoS ONE 2018, 13, e0205674. [CrossRef]
61. Herman, K.C. Engaging Latino-American Students in School: Evaluating a Causal Model for Understanding and Predicting Academic Achievement. Doctoral Thesis, University of Florida, Gainesville, FL, USA, 1997.
62. Rodríguez-Hernández, C.F.; Cascallar, E.; Kyndt, E. Socio-economic status and academic performance in higher education: A systematic review. Educ. Res. Rev. 2019, 29, 100305. [CrossRef]
63. Sackett, P.R.; Kuncel, N.R.; Arneson, J.J.; Cooper, S.R.; Waters, S.D. Does socioeconomic status explain the relationship between admissions tests and post-secondary academic performance? Psychol. Bull. 2009, 135, 1–22. [CrossRef]
64. Trusty, J.; Robinson, C.R.; Plata, M.; Ng, K.-M. Effects of Gender, Socioeconomic Status, and Early Academic Performance on Postsecondary Educational Choice. J. Couns. Dev. 2000, 78, 463–472. [CrossRef]
65. Brodnick, R.J.; Ree, M.J. A structural model of academic performance, socioeconomic status, and Spearman’s g. Educ. Psychol. Meas. 1995, 55, 583–594. [CrossRef]
66. Muñoz, P.; Redondo, A. Inequality and academic achievement in Chile. CEPAL Rev. 2013, 109, 99–114. [CrossRef]
67. Rossi, M. Factors Affecting Academic Performance of University Evening Students. J. Educ. Hum. Dev. 2017, 6, 96–102. [CrossRef]
68. Valladares, M.; Ramírez-Tagle, R.; Muñoz, M.A.; Obregón, A.M. Individual differences in chronotypes associated with academic performance among Chilean University students. Chronobiol. Int. 2017, 35, 578–583. [CrossRef]
69. Claro, S.; Paunesku, D.; Dweck, C.S. Growth mindset tempers the effects of poverty on academic achievement. Proc. Natl. Acad. Sci. USA 2016, 113, 8664–8668. [CrossRef]
70. Gestsdottir, S.; von Suchodoletz, A.; Wanless, S.B.; Hubert, B.; Guimard, P.; Birgisdottir, F.; Gunzenhauser, C.; McClelland, M. Early Behavioral Self-Regulation, Academic Achievement, and Gender: Longitudinal Findings from France, Germany, and Iceland. Appl. Dev. Sci. 2014, 18, 90–109. [CrossRef]
71. Zimmerman, B.J. Self-Regulated Learning and Academic Achievement: An Overview. Educ. Psychol. 1990, 25, 3–17. [CrossRef]
72. Nota, L.; Soresi, S.; Zimmerman, B.J. Self-regulation and academic achievement and resilience: A longitudinal study. Int. J. Educ. Res. 2004, 41, 198–215. [CrossRef]
73. Zimmerman, B.J. Self-Regulated Learning and Academic Achievement: Theoretical Perspectives, 2nd ed.; Routledge: London, UK, 2001.
74. Ruban, L.M.; McCoach, D.B.; McGuire, J.M.; Reis, S.M. The Differential Impact of Academic Self-Regulatory Methods on Academic Achievement among University Students with and Without Learning Disabilities. J. Learn. Disabil. 2003, 36, 270–286. [CrossRef]
75. Matuga, J.M. Self-regulation, goal orientation, and academic achievement of secondary students in online university courses. J. Educ. Technol. Soc. 2009, 12, 4–11.
76. Stringer, R.W.; Heath, N. Academic self-perception and its relationship to academic performance. Can. J. Educ./Rev. Can. De L’éducation 2008, 31, 327–345.
77. Chevalier, A.; Gibbons, S.; Thorpe, A.; Snell, M.; Hoskins, S. Student’s academic self-perception. Econ. Educ. Rev. 2009, 28, 716–727. [CrossRef]
78. Leung, P.W.; Kwan, K.S. Parenting styles, motivational orientations, and self-perceived academic competence: A mediational model. Merrill-Palmer Q. 1998, 44, 1–19.
dc.relation.citationendpage.spa.fl_str_mv 15
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 15
dc.relation.citationvolume.spa.fl_str_mv 15
dc.rights.spa.fl_str_mv © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Valparaíso
dc.publisher.spa.fl_str_mv MDPI AG
dc.publisher.place.spa.fl_str_mv Switzerland
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2071-1050/14/15/9232
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/19d400f0-01cb-4d56-9903-f3da9f27ee00/download
https://repositorio.cuc.edu.co/bitstreams/0ac86309-3907-4edd-a8be-6bb2c6f8cc2b/download
https://repositorio.cuc.edu.co/bitstreams/6f1ac87a-027d-46b7-bcb9-ccc4cf83aa10/download
https://repositorio.cuc.edu.co/bitstreams/22d1ec42-3561-49fe-bdb5-ba3c462645db/download
bitstream.checksum.fl_str_mv 5e9b8cc439cb99ff57e6fa515232e8ac
e30e9215131d99561d40d6b0abbe9bad
835d1a86b9d573f7be4fd595b4213a8f
873a8417194c379bec27bebef60f535d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166875588067328
spelling de la Fuente-Mella, HannsCampos Espinoza , Ricardo ChristianLAY, NELSONLameles, OmarPino-Moya, MarioRamírez Molina, Reynier Israel2022-08-04T14:25:34Z2022-08-04T14:25:34Z2022-07-28de la Fuente-Mella, H.; Campos-Espinoza, R.; Lay-Raby, N.; Lamelés-Corvalán, O.; Pino-Moya, M.; Ramírez-Molina, R. Multinomial Cross-Sectional Regression Models to Estimate and Predict the Determinants of Academic Performance: The Case of Auditor Accountant of the Pontifical Catholic University of Valparaíso. Sustainability 2022, 14, 9232. https:// doi.org/10.3390/su14159232https://hdl.handle.net/11323/9431https://doi.org/10.3390/su1415923210.3390/su141592322071-1050Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The debate on the primary cross-curricular skills or fundamental competencies that must be improved in higher education has increased in the last few years. This is especially important in the new distant learning environments, which bring new challenges to the educational process. Econometric models have been designed to explain the students’ academic performance, which has been measured using their qualifications average, the number of failed subjects, passed subjects, and withdrawn subjects, and the level of progress, among other indicators, to try to understand the influence of variables such as students’ self-esteem, reading comprehension, English proficiency level, and performance in a mathematics-related subject on the students of accountant auditor program from Pontificia Universidad Católica de Valparaiso. Students were asked to fill in a questionnaire to collect data on the psychological and pedagogical variables, while the socio-economic and socio-demographic data were collected from the university. The results have shown that the most significant variables in the development level of this skill type are socio-demographic and socio-economic characteristics. Some of the psychological and pedagogical variables that have, to a lesser degree, some influences are self-regulation in the learning process and the self-perception of anxiety levels. Lastly, some recommendations to intervene in the students’ learning process are presented with the objective of achieving a higher level of development in this type of competences.15 páginasapplication/pdfengMDPI AGSwitzerland© 2022 by the authors. Licensee MDPI, Basel, Switzerland.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Multinomial cross-sectional regression models to estimate and predict the determinants of academic performance: the case of auditor accountant of the Pontifical Catholic University of ValparaísoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.mdpi.com/2071-1050/14/15/9232ValparaísoSustainability1. Véliz, A.; Dorner, A.; Sandoval, S. Relación entre autoconcepto, eficacia académica y rendimiento académico en estudiantes de salud de Puerto Montt, Chile. EDUCADI 2016, 1, 97–109. [CrossRef]2. Mushtaq, I.; Khan, S.N. Factors affecting student’s academic performance. Glob. J. Manag. Bus. Res. 2012, 12, 17–22.3. Alamri, M.; Almaiah, M.; Al-Rahmi, W. Social Media Applications Affecting Students’ Academic Performance: A Model Developed for Sustainability in Higher Education. Sustainability 2020, 12, 6471. [CrossRef]4. Alam, M.M.; Ahmad, N.; Naveed, Q.N.; Patel, A.; Abohashrh, M.; Khaleel, M.A. E-learning services to archive sustainable learning and academic performance: An empirical study. Sustainability 2021, 13, 2653. [CrossRef]5. Cook, M.L. Politics of Labor Reform in Latin America: Between Flexibility and Rights; The Pennsylvania State University Press: University Park, PA, USA, 2010.6. Lamarra, N.F. Higher Education, Quality Evaluation and Accreditation in Latin America and MERCOSUR. Eur. J. Educ. 2003, 38, 253–269. [CrossRef]7. Rama, C. University virtualisation in Latin America. Int. J. Educ. Technol. High. Educ. 2014, 11, 32–41. [CrossRef]8. Montané, A.; Llanes, J.; Calduch, I.; Hervás, G.; Méndez-Ulrich, J.L.; Muñoz, J. The social dimension in Higher Education. Design and implementation of an instrument for student analytics in a Latin American context. In Culture, Citizenship, Participation. Comparative Perspectives from Latin America on Inclusive Education, 1st ed.; Bon, A., Pini, M., Akkermans, H., Eds.; Pangea: Amsterdam, The Netherlands, 2019; Volume 2, pp. 133–158.9. Lent, R.W.; Taveira, M.D.C.; Figuera, P.; Dorio, I.; Faria, S.; Gonçalves, A.M. Test of the Social Cognitive Model of Well-Being in Spanish College Students. J. Career Assess. 2016, 25, 135–143. [CrossRef]10. Llanes, J.; Méndez-Ulrich, J.L.; Montané, A. Motivación y satisfacción académica de los estudiantes de Educación: Una visión internacional. Educ. XX1 2021, 24, 45–68.11. Fracchia, E.; Mesquita, L.; Quiroga, L. Business Groups in Argentina, 1st ed.; Oxford University Press: New York, NY, USA, 2010.12. Rozada, M.G.; Menendez, A. Public university in Argentina: Subsidizing the rich? Econ. Educ. Rev. 2002, 21, 341–351. [CrossRef]13. Perales Franco, C.; McCowan, T. Rewiring higher education for the Sustainable Development Goals: The case of the In-tercultural University of Veracruz, Mexico. High. Educ. 2021, 81, 69–88. [CrossRef]14. Gill, C.C. Education in a Changing Mexico, 1st ed.; US Office of Education, Institute of International Studies: Washington, DC, USA, 1969.15. Laus, S.P.; Morosini, M.C. Higher Education in Brazil. In Higher Education in Latin America: The International Dimension, 1st ed.; De Wit, H., Jarmillo, C., Gacel-Ávila, J., Knight, J., Eds.; The World Bank: Washington, DC, USA, 2005; Volume 638, p. 111.16. Schwartzman, S. Brazil: Opportunity and crisis in higher education. High. Educ. 1988, 17, 99–119. [CrossRef]17. Berchin, I.I.; dos Santos Grando, V.; Marcon, G.A.; Corseuil, L.; de Andrade, J.B.S.O. Strategies to promote sustainability in higher education institutions: A case study of a federal institute of higher education in Brazil. Int. J. Sustain. High. Educ. 2017, 18, 1018–1038. [CrossRef]18. Brunner, J.J. Higher Education in Chile from 1980 to 1990. Eur. J. Educ. 1993, 28, 71. [CrossRef]19. Bernasconi, A. Private Higher Education in Chile: The New Exceptionalism. Int. High. Educ. 2003, 32, 18–19. [CrossRef]20. Ramírez, R.I.; Villalobos, J.V.; Lay, N.D.; Herrera, B.A. Medios de comunicación para la apropiación del conocimiento en instituciones educativas. Inf. Tecnológica 2021, 32, 27–38. [CrossRef]21. Delors, J. Los cuatro pilares de la educación. In La Educación Encierra un Tesoro. Informe a la UNESCO de la Comisión Internacional Sobre la Educación Para el Siglo XXI; Santillana/UNESCO: Madrid, Spain, 1996; Available online: https://uom.uib.cat/digitalAssets/ 221/221918_9.pdf (accessed on 8 July 2022).22. Prasetvono, H.; Abdillah, A.; Widiyarto, T.; Srivono, H. Character-based economic learning implementation and teacher’s reinforcement on student’s affective competence in minimizing hoax. Cakrawala Pendidik. 2018, 37, 426–435.23. Soubhi, F.Z.; Lima, L.; Talbi, M.; Knouzi, N.; Touri, B. Learning Difficulties Related of Health Status of Moroccan Students. Procedia Soc. Behav. Sci. 2015, 197, 1507–1511. [CrossRef]24. Awan, K. Experimentation and correlates of electronic nicotine delivery system (electronic cigarettes) among university students— A cross sectional study. Saudi Dent. J. 2016, 28, 91–95. [CrossRef]25. de la Fuente-Mella, H.; Umaña-Hermosilla, B.; Fonseca-Fuentes, M.; Elórtegui-Gómez, C. Multinomial Logistic Regression to Estimate the Financial Education and Financial Knowledge of University Students in Chile. Information 2021, 12, 379. [CrossRef]26. Torikka, A.; Kaltiala-Heino, R.; Rimpelä, A.; Marttunen, M.; Luukkaala, T.; Rimpelä, M. Self-reported depression is increasing among socio-economically disadvantaged adolescents—Repeated cross-sectional surveys from Finland from 2000 to 2011. BMC Public Health 2014, 14, 408. [CrossRef]27. Trinidad, M.F.; Pascual, J.L.G.; García, M.R. Perception of caring among nursing students: Results from a cross-sectional survey. Nurse Educ. Today 2019, 83, 104196. [CrossRef] [PubMed]28. Webb, J.; Chaffer, C. The expectation performance gap in accounting education: A review of generic skills development in UK accounting degrees. Account. Educ. 2016, 25, 349–367. [CrossRef]29. Douglas, S.; Gammie, E. An investigation into the development of non-technical skills by undergraduate accounting programmes. Account. Educ. 2019, 28, 304–332. [CrossRef]30. Van Vught, F.A. Governmental Strategies and Innovation in Higher Education. Higher Education Policies Series, 7, 1st ed.; Kingsley: London, UK, 1989.31. Kırkgöz, Y. The challenge of developing and maintaining curriculum innovation at higher education. Procedia Soc. Behav. Sci. 2009, 1, 73–78. [CrossRef]32. Kemp, K.K.; Goodchild, F.M. Evaluating a major innovation in higher education: The NCGIA core curriculum in GIS. J. Geogr. High. Educ. 1992, 16, 21–35. [CrossRef]33. Leask, B. Internationalisation, globalisation and curriculum innovation. In Researching International Pedagogies, 1st ed.; Hellstén, M., Reid, A., Eds.; Springer Dordrecht: Dordrecht, The Netherlands, 2008; pp. 9–26.34. Fuentes, G.Y.; Moreno-Murcia, L.M.; Rincón-Tellez, D.C.; Silva-Garcia, M.B. Evaluación de las habilidades blandas en la educación superior. Form. Univ. 2021, 14, 49–60. [CrossRef]35. Carrión-Martínez, J.J.; Fernández-Martínez, M.D.M.; Pérez-Fuentes, M.D.C.; Gázquez-Linares, J.J. Specific competencies in social work higher education in the framework of the European higher education area: The perception of future professionals in the Spanish context. Eur. J. Soc. Work 2018, 23, 43–55. [CrossRef]36. Echeverría-Ramírez, J.A.; Mazzitelli, C. Estudio de la percepción sobre los factores institucionales que influyen en el rendimiento académico de estudiantes de la Universidad Estatal a Distancia de Costa Rica. Rev. Electrónica Educ. 2021, 25, 326–344. [CrossRef]37. Preciado-Serrano, M.D.L.; Ángel-González, M.; Colunga-Rodríguez, C.; Vázquez-Colunga, J.C.; Esparza-Zamora, M.A.; VázquezJuárez, C.L.; Obando-Changuán, M.P. Construction and Validation of the University Academic Performance RAU Scale. Rev. Iberoam. Diagnóstico Evaluación Avaliação Psicológica (RIDEP) 2021, 60, 1–20. [CrossRef]38. Sagredo, A.V.; Etchepare, G.C.; Mendizábal, E.A.; Wilson, C.P. Academic performance and its relationship with socioemotional variables in chilean students from vulnerable contexts. Educ. XXI 2021, 24, 375–398. [CrossRef]39. Jiménez, M.; Pérez, F.; Gómez, P. Análisis de los factores tecnológicos sobre el rendimiento académico en una universidad pública en la Ciudad de México. Form. Univ. 2020, 13, 255–266. [CrossRef]40. Quinapallo, X.P.L.; Yépez, M.M.M.; Corbi, R.G. Clima de aula y rendimiento académico: Apuntes en torno al contexto universitario. Rev. Venez. Gerenc. 2021, 26, 140–156. [CrossRef]41. Sukier, H.; Ramírez Molina, R.I.; Parra, M.; Martínez, K.; Fernández, G.; Lay, N. Strategic Management of Human Talent from a Sustainable Approach. Rev. Opción 2020, 36, 929–953.42. Matyushok, V.; Krasavina, V.; Berezin, A.; García, J.S. The global economy in technological transformation conditions: A review of modern trends. Econ. Res. Ekon. Istraživanja 2021, 34, 1471–1497. [CrossRef]43. Glomado, E.; Zagrebaylova, Y. The Overview of Factors Contributing to the Global Economy Development, 1st ed.; Belarusian State Economic University: Minsk, Belarus, 2022.44. Gómez, L.; Oinas, P.; Wall, R.S. Undercurrents in the world economy: Evolving global investment flows in the South. World Econ. 2021, 45, 1830–1855. [CrossRef]45. Velasco, M.; Mumme, S.P. Environmental capacities in Latin America: A comparison of Brazil, Chile, and Mexico. Soc. Sci. J. 2021, 1–20. [CrossRef]46. Fernández, J. Escala de Motivaciones Psicosociales, 1st ed.; Tea Ediciones: Madrid, Spain, 1987.47. Allport, G.W.; Vernon, P.E.; Lindzey, G. Study of Values, 1st ed.; Houghton Mifflin: Boston, FL, USA, 1960.48. Pender, N.J.; Murdaugh, C.L.; Parsons, M.A. Health Promotion in Nursing Practice, 7th ed.; Pearson: London, UK, 2006.49. Wonderlic, E.F. Wonderlic Personnel Test; Wonderlic, Inc.: Liberty, IL, USA, 2004.50. De Moya, M.V.; Hernández, J.A.; Hernández, J.R.; Cózar, R. Análisis de los estilos de aprendizaje y las tic en la formación personal del alumnado universitario a través del cuestionario reatic. Rev. De Investig. Educ. 2009, 29, 137–156.51. Coopersmith, S. The Antecedents of Self-Esteem; W. H. Freeman & Co. Behavioral Science: San Francisco, CA, USA, 1967; p. 15. [CrossRef]52. Moren, C.C.; Augant, K.C.; Labrin, B.C.; de Giorgis, R.S.; de la Fuente-Mella, H.; Fritz, P.; Saavedra, M.V.; Monckton, P.H.; Castelli, L. A quantitative analysis of the identification of personality traits in engineering students and their relation to academic performance. Stud. High. Educ. 2019, 45, 1323–1334. [CrossRef]53. Mella, H.D.L.F.; Navarro, M.M.; Manero, C.B.; Iglesias, M.P.; Huenuman, C.G. Análisis de los determinantes del rendimiento académico. El caso de Contador Auditor de la Pontificia Universidad Católica de Valparaíso. Rev. Estud. Pedagógicos 2021, 47, 469–482. [CrossRef]54. De La Fuente-Mella, H.; Gutiérrez, C.G.; Crawford, K.; Foschino, G.; Crawford, B.; Soto, R.; De La Barra, C.L.; Caneo, F.C.; Monfroy, E.; Becerra-Rozas, M.; et al. Analysis and Prediction of Engineering Student Behavior and Their Relation to Academic Performance Using Data Analytics Techniques. Appl. Sci. 2020, 10, 7114. [CrossRef]55. Lawson, A.E. The Generality of Hypothetico-Deductive Reasoning: Making Scientific Thinking Explicit. Am. Biol. Teach. 2000, 62, 482–495. [CrossRef]56. Greene, W.H. Análisis Econométrico, 3rd ed.; Prentice Hall: Madrid, Spain, 1999.57. Coughenour, C.; Paz, A.; de la Fuente-Mella, H.; Singh, A. Multinomial logistic regression to estimate and predict perceptions of bicycle and transportation infrastructure in a sprawling metropolitan area. J. Public Health 2016, 38, e401–e408. [CrossRef] [PubMed]58. Flores-Mendoza, C.; Ardila, R.; Gallegos, M.; Reategui-Colareta, N. General Intelligence and Socioeconomic Status as Strong Predictors of Student Performance in Latin American Schools: Evidence from PISA Items. Front. Educ. 2021, 6, 1–16. [CrossRef]59. Murillo, F.J.; Román, M. School infrastructure and resources do matter: Analysis of the incidence of school resources on the performance of Latin American students. Sch. Eff. Sch. Improv. 2011, 22, 29–50. [CrossRef]60. Torres-Roman, J.S.; Cruz-Avila, Y.; Suarez-Osorio, K.; Arce-Huamaní, M.; Menez-Sanchez, A.; Robalo, T.R.A.; Mejia, C.R.; Ruiz, E. Motivation towards medical career choice and academic performance in Latin American medical students: A cross-sectional study. PLoS ONE 2018, 13, e0205674. [CrossRef]61. Herman, K.C. Engaging Latino-American Students in School: Evaluating a Causal Model for Understanding and Predicting Academic Achievement. Doctoral Thesis, University of Florida, Gainesville, FL, USA, 1997.62. Rodríguez-Hernández, C.F.; Cascallar, E.; Kyndt, E. Socio-economic status and academic performance in higher education: A systematic review. Educ. Res. Rev. 2019, 29, 100305. [CrossRef]63. Sackett, P.R.; Kuncel, N.R.; Arneson, J.J.; Cooper, S.R.; Waters, S.D. Does socioeconomic status explain the relationship between admissions tests and post-secondary academic performance? Psychol. Bull. 2009, 135, 1–22. [CrossRef]64. Trusty, J.; Robinson, C.R.; Plata, M.; Ng, K.-M. Effects of Gender, Socioeconomic Status, and Early Academic Performance on Postsecondary Educational Choice. J. Couns. Dev. 2000, 78, 463–472. [CrossRef]65. Brodnick, R.J.; Ree, M.J. A structural model of academic performance, socioeconomic status, and Spearman’s g. Educ. Psychol. Meas. 1995, 55, 583–594. [CrossRef]66. Muñoz, P.; Redondo, A. Inequality and academic achievement in Chile. CEPAL Rev. 2013, 109, 99–114. [CrossRef]67. Rossi, M. Factors Affecting Academic Performance of University Evening Students. J. Educ. Hum. Dev. 2017, 6, 96–102. [CrossRef]68. Valladares, M.; Ramírez-Tagle, R.; Muñoz, M.A.; Obregón, A.M. Individual differences in chronotypes associated with academic performance among Chilean University students. Chronobiol. Int. 2017, 35, 578–583. [CrossRef]69. Claro, S.; Paunesku, D.; Dweck, C.S. Growth mindset tempers the effects of poverty on academic achievement. Proc. Natl. Acad. Sci. USA 2016, 113, 8664–8668. [CrossRef]70. Gestsdottir, S.; von Suchodoletz, A.; Wanless, S.B.; Hubert, B.; Guimard, P.; Birgisdottir, F.; Gunzenhauser, C.; McClelland, M. Early Behavioral Self-Regulation, Academic Achievement, and Gender: Longitudinal Findings from France, Germany, and Iceland. Appl. Dev. Sci. 2014, 18, 90–109. [CrossRef]71. Zimmerman, B.J. Self-Regulated Learning and Academic Achievement: An Overview. Educ. Psychol. 1990, 25, 3–17. [CrossRef]72. Nota, L.; Soresi, S.; Zimmerman, B.J. Self-regulation and academic achievement and resilience: A longitudinal study. Int. J. Educ. Res. 2004, 41, 198–215. [CrossRef]73. Zimmerman, B.J. Self-Regulated Learning and Academic Achievement: Theoretical Perspectives, 2nd ed.; Routledge: London, UK, 2001.74. Ruban, L.M.; McCoach, D.B.; McGuire, J.M.; Reis, S.M. The Differential Impact of Academic Self-Regulatory Methods on Academic Achievement among University Students with and Without Learning Disabilities. J. Learn. Disabil. 2003, 36, 270–286. [CrossRef]75. Matuga, J.M. Self-regulation, goal orientation, and academic achievement of secondary students in online university courses. J. Educ. Technol. Soc. 2009, 12, 4–11.76. Stringer, R.W.; Heath, N. Academic self-perception and its relationship to academic performance. Can. J. Educ./Rev. Can. De L’éducation 2008, 31, 327–345.77. Chevalier, A.; Gibbons, S.; Thorpe, A.; Snell, M.; Hoskins, S. Student’s academic self-perception. Econ. Educ. Rev. 2009, 28, 716–727. [CrossRef]78. Leung, P.W.; Kwan, K.S. Parenting styles, motivational orientations, and self-perceived academic competence: A mediational model. Merrill-Palmer Q. 1998, 44, 1–19.1511515Multinomial logistic regressionAcademic performanceEconometric modelsPublicationORIGINALMultinomial cross-sectional regression models to estimate and predict the determinants of academic performance.pdfMultinomial cross-sectional regression models to estimate and predict the determinants of academic performance.pdfapplication/pdf345050https://repositorio.cuc.edu.co/bitstreams/19d400f0-01cb-4d56-9903-f3da9f27ee00/download5e9b8cc439cb99ff57e6fa515232e8acMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/0ac86309-3907-4edd-a8be-6bb2c6f8cc2b/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTMultinomial cross-sectional regression models to estimate and predict the determinants of academic performance.pdf.txtMultinomial cross-sectional regression models to estimate and predict the determinants of academic performance.pdf.txttext/plain59795https://repositorio.cuc.edu.co/bitstreams/6f1ac87a-027d-46b7-bcb9-ccc4cf83aa10/download835d1a86b9d573f7be4fd595b4213a8fMD53THUMBNAILMultinomial cross-sectional regression models to estimate and predict the determinants of academic performance.pdf.jpgMultinomial cross-sectional regression models to estimate and predict the determinants of academic performance.pdf.jpgimage/jpeg16455https://repositorio.cuc.edu.co/bitstreams/22d1ec42-3561-49fe-bdb5-ba3c462645db/download873a8417194c379bec27bebef60f535dMD5411323/9431oai:repositorio.cuc.edu.co:11323/94312024-09-17 14:20:47.332https://creativecommons.org/licenses/by-nc-sa/4.0/© 2022 by the authors. Licensee MDPI, Basel, Switzerland.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==