Unsupervised Human Activity Recognition Using the Clustering Approach: A Review
Currently, many applications have emerged from the implementation of softwaredevelopment and hardware use, known as the Internet of things. One of the most importantapplication areas of this type of technology is in health care. Various applications arise daily inorder to improve the quality of life...
- Autores:
-
Ariza Colpas, Paola Patricia
VICARIO, ENRICO
De-La-Hoz-Franco, Emiro
Pineres-Melo, Marlon
Oviedo Carrascal, Ana Isabel
PATARA, FULVIO
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7356
- Acceso en línea:
- https://hdl.handle.net/11323/7356
https://doi.org/10.3390/s20092702
https://repositorio.cuc.edu.co/
- Palabra clave:
- ambient assisted living—AAL
human activity recognition—HAR
activities of dailyliving—ADL
ctivity recognition systems—ARS
clustering
unsupervised activity recognition
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International