Pronóstico de la demanda de pasajeros de transporte aéreo: un estudio de caso de Colombia
The airline sector is increasingly using predictive models based on historical demand data towards making decisions in intermediate and long term. This study estimates three different models using data from all the Colombian territory regarding national and international flights like the GDP, employ...
- Autores:
-
Arteta Heins, Alonsa
Montes Rodriguez, Karol
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13252
- Acceso en línea:
- https://hdl.handle.net/11323/13252
https://repositorio.cuc.edu.co
- Palabra clave:
- Predictive models
Aviation sector
Flight demand
GDP
Employment rates
SARIMA
SARIMAX
Performance
PIB
Colombia
Modelos predictivos
Sector aéreo
Demanda de vuelos
Tasas de empleo
Parámetros
- Rights
- closedAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id |
RCUC2_bd37370e4f7ed83036790c78195ef872 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13252 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Pronóstico de la demanda de pasajeros de transporte aéreo: un estudio de caso de Colombia |
title |
Pronóstico de la demanda de pasajeros de transporte aéreo: un estudio de caso de Colombia |
spellingShingle |
Pronóstico de la demanda de pasajeros de transporte aéreo: un estudio de caso de Colombia Predictive models Aviation sector Flight demand GDP Employment rates SARIMA SARIMAX Performance PIB Colombia Modelos predictivos Sector aéreo Demanda de vuelos Tasas de empleo Parámetros |
title_short |
Pronóstico de la demanda de pasajeros de transporte aéreo: un estudio de caso de Colombia |
title_full |
Pronóstico de la demanda de pasajeros de transporte aéreo: un estudio de caso de Colombia |
title_fullStr |
Pronóstico de la demanda de pasajeros de transporte aéreo: un estudio de caso de Colombia |
title_full_unstemmed |
Pronóstico de la demanda de pasajeros de transporte aéreo: un estudio de caso de Colombia |
title_sort |
Pronóstico de la demanda de pasajeros de transporte aéreo: un estudio de caso de Colombia |
dc.creator.fl_str_mv |
Arteta Heins, Alonsa Montes Rodriguez, Karol |
dc.contributor.advisor.none.fl_str_mv |
Figueroa Loaiza, Miguel A. borrero restrepo, diego |
dc.contributor.author.none.fl_str_mv |
Arteta Heins, Alonsa Montes Rodriguez, Karol |
dc.subject.proposal.eng.fl_str_mv |
Predictive models Aviation sector Flight demand GDP Employment rates SARIMA SARIMAX Performance PIB |
topic |
Predictive models Aviation sector Flight demand GDP Employment rates SARIMA SARIMAX Performance PIB Colombia Modelos predictivos Sector aéreo Demanda de vuelos Tasas de empleo Parámetros |
dc.subject.proposal.spa.fl_str_mv |
Colombia Modelos predictivos Sector aéreo Demanda de vuelos Tasas de empleo Parámetros |
description |
The airline sector is increasingly using predictive models based on historical demand data towards making decisions in intermediate and long term. This study estimates three different models using data from all the Colombian territory regarding national and international flights like the GDP, employment rates, among others socioeconomics variables. Model structures considered include Holt-Winters and variations of time series models (SARIMA and SARIMAX). For comparing the forecasting performance parameters such as SSE, ESS, RMSE, MAE and MAPE were used. The analysis shows significant gains in model fit when GDP, employment rate and tourism factors were included in the SARIMAX model for national flight predictions, and as for national predictions the SARIMA model had the best performance in terms of the mean absolute percentage error, MAPE. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-08-05T13:10:03Z |
dc.date.available.none.fl_str_mv |
2024-08-05T13:10:03Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13252 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co |
url |
https://hdl.handle.net/11323/13252 https://repositorio.cuc.edu.co |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Adrangi, B., Chatrath, A., Raffiee, K., 2001. The demand for US air transport service: a chaos and nonlinearity investigation. Transportation Research Part E: Logistics and Transportation Review 37, 337–353. https://doi.org/10.1016/S1366-5545(00)00017-X Aeronáutica Civil, 2017. La Aviación En Cifras. Albers, S., Klapper, D., Konradt, U., Walter, A., Wolf, J. (Eds.), 2007. Methodik der empirischen Forschung. Gabler, Wiesbaden. https://doi.org/10.1007/978-3-8349-9121-8 Aloulou, M., Haouari, M., Zeghal Mansour, F., 2013. A model for enhancing robustness of aircraft and passenger connections. Transportation Research Part C: Emerging Technologies 32, 48–60. https://doi.org/10.1016/j.trc.2013.03.008 Baker, D., Merkert, R., & Kamruzzaman, M. (2015). Regional aviation and economic growth: cointegration and causality analysis in Australia. Journal of Transport Geography, 43, 140-150. Box, G.E.P., Jenkins, G.M., 1976. Time series analysis: forecasting and control. Holden-Day, San Francisco. Button, K., & Taylor, S. (2000). International air transportation and economic development. Journal of Air Transport Management, 6(4), 209-222. Carson, R.T., Cenesizoglu, T., Parker, R., 2010. Forecasting (aggregate) demand for US commercial air travel. International Journal of Forecasting 19. Chen, C.-F., Chang, Y.-H., Chang, Y.-W., 2009. Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan. Transportmetrica 5, 125–140. https://doi.org/10.1080/18128600802591210 Coldren, G.M., Koppelman, F.S., 2005. Modeling the competition among air-travel itinerary shares: GEV model development. Transportation Research Part A: Policy and Practice 39. De Neufville, R. (Ed.), 2013. Airport systems: planning, design, and management, 2nd ed. ed. McGraw-Hill, New York. Dobruszkes, F., Mondou, V., 2013. Aviation liberalization as a means to promote international tourism: The EU–Morocco case. Journal of Air Transport Management 29, 23–34. https://doi.org/10.1016/j.jairtraman.2013.02.001 Faraway, J.J., Chatfield, C., 1998. Time series forecasting with neural networks: a comparative study using the air line data. Ferbar, L., Mojškerc, B., Toman, A., 2016. Demand forecasting with four-parameter exponential smoothing. International Journal of Production Economics 181. https://doi.org/10.1016/j.ijpe.2016.08.004 Flyvbjerg, B., Skamris Holm, M.K., Buhl, S.L., 2005. How (In)accurate Are Demand Forecasts in Public Works Projects?: The Case of Transportation. Journal of the American Planning Association 71, 131–146. https://doi.org/10.1080/01944360508976688 Forsyth, P. (2006). Estimating the marginal social cost of airport noise and congestion. Transportation Research Part D: Transport and Environment, 11(5), 344-356. Gelhausen, M., Berster, P., Wilken, D., 2018. A new direct demand model of long-term forecasting air passengers and air transport movements at German airports. Journal of Air Transport Management 71. https://doi.org/10.1016/j.jairtraman.2018.04.001 Goh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23(5), 499- 510. Graham, A., Papatheodorou, A., & Forsyth, P. (2008). Aviation and Tourism. IATA, 2019. El valor de la aviacion en Colombia. Jones, A.R., 2018. Best Fit Lines & Curves: And Some Mathe-Magical Transformations. Routledge. Kamel, M. A., & Shehata, E. H. (2015). "A comparison between SARIMA and SARIMAX models for forecasting the volume of demand for the Egyptian tourism industry." International Journal of Business and Management, 10(4), 182-189. Kays, H.M.E., Karim, A.N.M., Daud, M.R.C., Varela, M.L.R., Putnik, G.D., Machado, J.M., 2018. A Collaborative Multiplicative Holt-Winters Forecasting Approach with Dynamic Fuzzy-Level Component. Applied Sciences 8, 530. https://doi.org/10.3390/app8040530 Lai, S.L., Lu, W.-L., 2005. Impact analysis of September 11 on air travel demand in the USA. Journal of Air Transport Management, Journal of Air Transport Management. - Elsevier, ISSN 0969-6997. - Vol. 11.2005, 6, p. 455-458 11. Lai, S.L., Lu, W.-L., 2005. Impact analysis of September 11 on air travel demand in the USA. Journal of Air Transport Management, Journal of Air Transport Management. - Elsevier, ISSN 0969-6997. - Vol. 11.2005, 6, p. 455-458 11. Lian, J., Denstadli, J., 2010. Booming Leisure Air Travel to Norway - The Role of Airline Competition. Scandinavian Journal of Hospitality and Tourism - SCAND J HOSP TOUR 10, 1–15. https://doi.org/10.1080/15022250.2010.484215 Montesino Pouzols, F., Lopez, D., Barros, A., 2011. Mining and Control of Network Traffic by Computational Intelligence 342. https://doi.org/10.1007/978-3-642-18084-2 Nai, W., Liu, L., Wang, S., Dong, D., 2017. An EMD-SARIMA-based modeling approach for air traffic forecasting. Algorithms 10, 139. https://doi.org/10.3390/a10040139 Nicolaisen, M.S., Driscoll, P.A., 2014. Ex-Post Evaluations of Demand Forecast Accuracy: A Literature Review. Transport Reviews 34, 540–557. https://doi.org/10.1080/01441647.2014.926428 Nieto, M., Carmona Benitez, R., 2018. ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry. Journal of Air Transport Management 71. https://doi.org/10.1016/j.jairtraman.2018.05.007 Pankratz, A. (1983). Forecasting with Univariate Box-Jenkins Models: Concepts and Cases. John Wiley & Sons. Saâdaoui, F., Saadaoui, H., Rabbouch, H., 2020. Hybrid Feedforward ANN with NLS-Based Regression Curve Fitting for US Air Traffic Forecasting. Neural Computing and Applications 32, 10073–10085. https://doi.org/10.1007/s00521-019-04539-5 Scarpel, R.A., 2013. Forecasting air passengers at São Paulo International Airport using a mixture of local experts model. Journal of air transport management, Journal of air transport management. - Amsterdam [u.a.] : Elsevier, ISSN 0969-6997, ZDB-ID 1208154-1. - Vol. 26.2013, p. 35-39 26. Sivrikaya, O., Tunc, E., 2013. Demand Forecasting for Domestic Air Transportation in Turkey. TOTJ 7, 20–26. https://doi.org/10.2174/1874447820130508001 Srisaeng, P., Baxter, G., Wild, G., 2015. An adaptive neuro-fuzzy inference system for forecasting Australia’s domestic low cost carrier passenger demand. Aviation 19, 150– 163. https://doi.org/10.3846/16487788.2015.1104806 Standford University, n.d. Error Sum of Squares [WWW Document]. URL https://hlab.stanford.edu/brian/error_sum_of_squares.html (accessed 11.6.21). Tsui, W. H. K., Balli, H. O., Gilbey, A., & Gow, H. (2014). Operational efficiency of Asia– Pacific airports. Journal of Air Transport Management, 40, 16-24. US Congress Joint Economic Committee, 2008. Your flight has been delayed again : flight delays cost passengers, airlines, and the U.S. economy billions-. Valdes, V., 2015. Determinants of air travel demand in Middle Income Countries. Journal of Air Transport Management 42, 75–84. https://doi.org/10.1016/j.jairtraman.2014.09.002 Wadud, Z., 2013. Simultaneous Modeling of Passenger and Cargo Demand at an Airport. Transportation Research Record Journal of the Transportation Research Board 2336, 63– 74. https://doi.org/10.3141/2336-08 Wang, S., Feng, J., Liu, G., 2013. Application of seasonal time series model in the precipitation forecast. Mathematical and Computer Modelling 58, 677–683. https://doi.org/10.1016/j.mcm.2011.10.034 Warnock-Smith, D., Morrell, P., 2008. Air transport liberalisation and traffic growth in tourism dependent economies: A case-history of some US-Caribbean markets. Journal of Air Transport Management 14, 82–91. https://doi.org/10.1016/j.jairtraman.2008.02.001 Wijnen, R.A.A., Walker, W.E., Kwakkel, J.H., 2008. Decision Support for Airport Strategic Planning. Transportation Planning and Technology 31, 11–34. https://doi.org/10.1080/03081060701835670 Xie, G., Wang, S., Lai, K.K., 2014. Short-term forecasting of air passenger by using hybrid seasonal decomposition and least squares support vector regression approaches. Journal of Air Transport Management 37, 20–26. https://doi.org/10.1016/j.jairtraman.2014.01.009 Xu, S., Chan, H., Zhang, T., 2018. Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach. Transportation Research Part E Logistics and Transportation Review 122, 169–180. https://doi.org/10.1016/j.tre.2018.12.005 Zhang, F., Graham, D.J., 2020. Air transport and economic growth: a review of the impact mechanism and causal relationships. Transport Reviews 40, 506–528. https://doi.org/10.1080/01441647.2020.1738587 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
50 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.department.spa.fl_str_mv |
Civil y Ambiental |
dc.publisher.place.spa.fl_str_mv |
Barranquilla, Colombia |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/590a5cb3-019f-4ca7-83a6-2aaa2bddb964/download https://repositorio.cuc.edu.co/bitstreams/4fe5d6a0-9133-4f13-aa1d-0cad98459060/download https://repositorio.cuc.edu.co/bitstreams/d9aed1e6-1f58-42e0-8c9f-eb32b998f047/download https://repositorio.cuc.edu.co/bitstreams/19b6dfea-a134-40a8-ab44-142c34e31c94/download |
bitstream.checksum.fl_str_mv |
83ad288a0f5c4fe783878212ffce4b57 2f9959eaf5b71fae44bbf9ec84150c7a 792a9d8eaa2eae49dd2097087f49c387 d896e63db2042da373b69a5f452292bb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760731349057536 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbFigueroa Loaiza, Miguel A.borrero restrepo, diegoArteta Heins, AlonsaMontes Rodriguez, Karol2024-08-05T13:10:03Z2024-08-05T13:10:03Z2024https://hdl.handle.net/11323/13252Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.coThe airline sector is increasingly using predictive models based on historical demand data towards making decisions in intermediate and long term. This study estimates three different models using data from all the Colombian territory regarding national and international flights like the GDP, employment rates, among others socioeconomics variables. Model structures considered include Holt-Winters and variations of time series models (SARIMA and SARIMAX). For comparing the forecasting performance parameters such as SSE, ESS, RMSE, MAE and MAPE were used. The analysis shows significant gains in model fit when GDP, employment rate and tourism factors were included in the SARIMAX model for national flight predictions, and as for national predictions the SARIMA model had the best performance in terms of the mean absolute percentage error, MAPE.El sector aéreo utiliza cada vez más modelos predictivos basados en datos históricos de demanda para la toma de decisiones a medio y largo plazo. Este estudio estima tres modelos diferentes utilizando datos de todo el territorio colombiano sobre vuelos nacionales e internacionales como el PIB, tasas de empleo, entre otras variables socioeconómicas. Las estructuras de modelos consideradas incluyen Holt-Winters y variaciones de modelos de series temporales (SARIMA y SARIMAX). Para comparar el desempeño del pronóstico se utilizaron parámetros como SSE, ESS, RMSE, MAE y MAPE. El análisis muestra mejoras significativas en el ajuste del modelo cuando se incluyeron el PIB, la tasa de empleo y los factores turísticos en el modelo SARIMAX para las predicciones de vuelos nacionales, y en cuanto a las predicciones nacionales, el modelo SARIMA tuvo el mejor desempeño en términos del error porcentual absoluto medio, MAPE.Introducción 10 – Justificación 14 – Objetivos 16 – General 16 – Específicos 16 -- Estado del arte 17 – Metodología 23 -- Series de tiempo 24 -- SARIMA 24 -- SARIMAX 25 -- Holt Winters Model 26 – Desempeño 27 – Datos 29 -- Información considerada 29 – Resultados 34 – Discusiones 40 – Conclusiones 42 -- Estudios futuros 44 -- PRONÓSTICO DE LA DEMANDA DE PASAJEROS DE TRANSPORTE AÉREO 5 Referencias 45 --Ingeniero(a) CivilPregrado50 páginasapplication/pdfspaCorporación Universidad de la CostaCivil y AmbientalBarranquilla, ColombiaIngeniería CivilPronóstico de la demanda de pasajeros de transporte aéreo: un estudio de caso de ColombiaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionColombiaAdrangi, B., Chatrath, A., Raffiee, K., 2001. The demand for US air transport service: a chaos and nonlinearity investigation. Transportation Research Part E: Logistics and Transportation Review 37, 337–353. https://doi.org/10.1016/S1366-5545(00)00017-XAeronáutica Civil, 2017. La Aviación En Cifras.Albers, S., Klapper, D., Konradt, U., Walter, A., Wolf, J. (Eds.), 2007. Methodik der empirischen Forschung. Gabler, Wiesbaden. https://doi.org/10.1007/978-3-8349-9121-8Aloulou, M., Haouari, M., Zeghal Mansour, F., 2013. A model for enhancing robustness of aircraft and passenger connections. Transportation Research Part C: Emerging Technologies 32, 48–60. https://doi.org/10.1016/j.trc.2013.03.008Baker, D., Merkert, R., & Kamruzzaman, M. (2015). Regional aviation and economic growth: cointegration and causality analysis in Australia. Journal of Transport Geography, 43, 140-150.Box, G.E.P., Jenkins, G.M., 1976. Time series analysis: forecasting and control. Holden-Day, San Francisco.Button, K., & Taylor, S. (2000). International air transportation and economic development. Journal of Air Transport Management, 6(4), 209-222.Carson, R.T., Cenesizoglu, T., Parker, R., 2010. Forecasting (aggregate) demand for US commercial air travel. International Journal of Forecasting 19.Chen, C.-F., Chang, Y.-H., Chang, Y.-W., 2009. Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan. Transportmetrica 5, 125–140. https://doi.org/10.1080/18128600802591210Coldren, G.M., Koppelman, F.S., 2005. Modeling the competition among air-travel itinerary shares: GEV model development. Transportation Research Part A: Policy and Practice 39.De Neufville, R. (Ed.), 2013. Airport systems: planning, design, and management, 2nd ed. ed. McGraw-Hill, New York.Dobruszkes, F., Mondou, V., 2013. Aviation liberalization as a means to promote international tourism: The EU–Morocco case. Journal of Air Transport Management 29, 23–34. https://doi.org/10.1016/j.jairtraman.2013.02.001Faraway, J.J., Chatfield, C., 1998. Time series forecasting with neural networks: a comparative study using the air line data.Ferbar, L., Mojškerc, B., Toman, A., 2016. Demand forecasting with four-parameter exponential smoothing. International Journal of Production Economics 181. https://doi.org/10.1016/j.ijpe.2016.08.004Flyvbjerg, B., Skamris Holm, M.K., Buhl, S.L., 2005. How (In)accurate Are Demand Forecasts in Public Works Projects?: The Case of Transportation. Journal of the American Planning Association 71, 131–146. https://doi.org/10.1080/01944360508976688Forsyth, P. (2006). Estimating the marginal social cost of airport noise and congestion. Transportation Research Part D: Transport and Environment, 11(5), 344-356.Gelhausen, M., Berster, P., Wilken, D., 2018. A new direct demand model of long-term forecasting air passengers and air transport movements at German airports. Journal of Air Transport Management 71. https://doi.org/10.1016/j.jairtraman.2018.04.001Goh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23(5), 499- 510.Graham, A., Papatheodorou, A., & Forsyth, P. (2008). Aviation and Tourism. IATA, 2019. El valor de la aviacion en Colombia.Jones, A.R., 2018. Best Fit Lines & Curves: And Some Mathe-Magical Transformations. Routledge.Kamel, M. A., & Shehata, E. H. (2015). "A comparison between SARIMA and SARIMAX models for forecasting the volume of demand for the Egyptian tourism industry." International Journal of Business and Management, 10(4), 182-189.Kays, H.M.E., Karim, A.N.M., Daud, M.R.C., Varela, M.L.R., Putnik, G.D., Machado, J.M., 2018. A Collaborative Multiplicative Holt-Winters Forecasting Approach with Dynamic Fuzzy-Level Component. Applied Sciences 8, 530. https://doi.org/10.3390/app8040530Lai, S.L., Lu, W.-L., 2005. Impact analysis of September 11 on air travel demand in the USA. Journal of Air Transport Management, Journal of Air Transport Management. - Elsevier, ISSN 0969-6997. - Vol. 11.2005, 6, p. 455-458 11.Lai, S.L., Lu, W.-L., 2005. Impact analysis of September 11 on air travel demand in the USA. Journal of Air Transport Management, Journal of Air Transport Management. - Elsevier, ISSN 0969-6997. - Vol. 11.2005, 6, p. 455-458 11.Lian, J., Denstadli, J., 2010. Booming Leisure Air Travel to Norway - The Role of Airline Competition. Scandinavian Journal of Hospitality and Tourism - SCAND J HOSP TOUR 10, 1–15. https://doi.org/10.1080/15022250.2010.484215Montesino Pouzols, F., Lopez, D., Barros, A., 2011. Mining and Control of Network Traffic by Computational Intelligence 342. https://doi.org/10.1007/978-3-642-18084-2Nai, W., Liu, L., Wang, S., Dong, D., 2017. An EMD-SARIMA-based modeling approach for air traffic forecasting. Algorithms 10, 139. https://doi.org/10.3390/a10040139Nicolaisen, M.S., Driscoll, P.A., 2014. Ex-Post Evaluations of Demand Forecast Accuracy: A Literature Review. Transport Reviews 34, 540–557. https://doi.org/10.1080/01441647.2014.926428Nieto, M., Carmona Benitez, R., 2018. ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry. Journal of Air Transport Management 71. https://doi.org/10.1016/j.jairtraman.2018.05.007Pankratz, A. (1983). Forecasting with Univariate Box-Jenkins Models: Concepts and Cases. John Wiley & Sons.Saâdaoui, F., Saadaoui, H., Rabbouch, H., 2020. Hybrid Feedforward ANN with NLS-Based Regression Curve Fitting for US Air Traffic Forecasting. Neural Computing and Applications 32, 10073–10085. https://doi.org/10.1007/s00521-019-04539-5Scarpel, R.A., 2013. Forecasting air passengers at São Paulo International Airport using a mixture of local experts model. Journal of air transport management, Journal of air transport management. - Amsterdam [u.a.] : Elsevier, ISSN 0969-6997, ZDB-ID 1208154-1. - Vol. 26.2013, p. 35-39 26.Sivrikaya, O., Tunc, E., 2013. Demand Forecasting for Domestic Air Transportation in Turkey. TOTJ 7, 20–26. https://doi.org/10.2174/1874447820130508001Srisaeng, P., Baxter, G., Wild, G., 2015. An adaptive neuro-fuzzy inference system for forecasting Australia’s domestic low cost carrier passenger demand. Aviation 19, 150– 163. https://doi.org/10.3846/16487788.2015.1104806Standford University, n.d. Error Sum of Squares [WWW Document]. URL https://hlab.stanford.edu/brian/error_sum_of_squares.html (accessed 11.6.21).Tsui, W. H. K., Balli, H. O., Gilbey, A., & Gow, H. (2014). Operational efficiency of Asia– Pacific airports. Journal of Air Transport Management, 40, 16-24.US Congress Joint Economic Committee, 2008. Your flight has been delayed again : flight delays cost passengers, airlines, and the U.S. economy billions-.Valdes, V., 2015. Determinants of air travel demand in Middle Income Countries. Journal of Air Transport Management 42, 75–84. https://doi.org/10.1016/j.jairtraman.2014.09.002Wadud, Z., 2013. Simultaneous Modeling of Passenger and Cargo Demand at an Airport. Transportation Research Record Journal of the Transportation Research Board 2336, 63– 74. https://doi.org/10.3141/2336-08Wang, S., Feng, J., Liu, G., 2013. Application of seasonal time series model in the precipitation forecast. Mathematical and Computer Modelling 58, 677–683. https://doi.org/10.1016/j.mcm.2011.10.034Warnock-Smith, D., Morrell, P., 2008. Air transport liberalisation and traffic growth in tourism dependent economies: A case-history of some US-Caribbean markets. Journal of Air Transport Management 14, 82–91. https://doi.org/10.1016/j.jairtraman.2008.02.001Wijnen, R.A.A., Walker, W.E., Kwakkel, J.H., 2008. Decision Support for Airport Strategic Planning. Transportation Planning and Technology 31, 11–34. https://doi.org/10.1080/03081060701835670Xie, G., Wang, S., Lai, K.K., 2014. Short-term forecasting of air passenger by using hybrid seasonal decomposition and least squares support vector regression approaches. Journal of Air Transport Management 37, 20–26. https://doi.org/10.1016/j.jairtraman.2014.01.009Xu, S., Chan, H., Zhang, T., 2018. Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach. Transportation Research Part E Logistics and Transportation Review 122, 169–180. https://doi.org/10.1016/j.tre.2018.12.005Zhang, F., Graham, D.J., 2020. Air transport and economic growth: a review of the impact mechanism and causal relationships. Transport Reviews 40, 506–528. https://doi.org/10.1080/01441647.2020.1738587Predictive modelsAviation sectorFlight demandGDPEmployment ratesSARIMASARIMAXPerformancePIBColombiaModelos predictivosSector aéreoDemanda de vuelosTasas de empleoParámetrosPublicationORIGINALPronóstico de la demanda de pasajeros de transporte aéreo.pdfPronóstico de la demanda de pasajeros de transporte aéreo.pdfTesisapplication/pdf752641https://repositorio.cuc.edu.co/bitstreams/590a5cb3-019f-4ca7-83a6-2aaa2bddb964/download83ad288a0f5c4fe783878212ffce4b57MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/4fe5d6a0-9133-4f13-aa1d-0cad98459060/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTPronóstico de la demanda de pasajeros de transporte aéreo.pdf.txtPronóstico de la demanda de pasajeros de transporte aéreo.pdf.txtExtracted texttext/plain64793https://repositorio.cuc.edu.co/bitstreams/d9aed1e6-1f58-42e0-8c9f-eb32b998f047/download792a9d8eaa2eae49dd2097087f49c387MD53THUMBNAILPronóstico de la demanda de pasajeros de transporte aéreo.pdf.jpgPronóstico de la demanda de pasajeros de transporte aéreo.pdf.jpgGenerated Thumbnailimage/jpeg7948https://repositorio.cuc.edu.co/bitstreams/19b6dfea-a134-40a8-ab44-142c34e31c94/downloadd896e63db2042da373b69a5f452292bbMD5411323/13252oai:repositorio.cuc.edu.co:11323/132522024-09-17 10:51:47.999https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |