Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation

Every year the world loses about 50% of fruits and vegetables post-harvest and in the supply chain. The use of biodegradable coatings and films with antioxidant properties has been considered an excellent alternative to extend the shelf life of food. Therefore, the objective of this work was to deve...

Full description

Autores:
Gómez Contreras, Paula Andrea
Figueroa López, Kelly Johana
Hernández-Fernández, Joaquín
Cortés Rodríguez, Misael
Ortega-Toro, Rodrigo
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9048
Acceso en línea:
https://hdl.handle.net/11323/9048
https://doi.org/10.3390/app112211057
https://repositorio.cuc.edu.co/
Palabra clave:
Physicochemical properties
Shelf life
Lime essential oil
Fennel essential oil
Lavender essential oil
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_bae3f6cc3f5ada8fdd2ddce555742e13
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9048
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation
title Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation
spellingShingle Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation
Physicochemical properties
Shelf life
Lime essential oil
Fennel essential oil
Lavender essential oil
title_short Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation
title_full Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation
title_fullStr Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation
title_full_unstemmed Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation
title_sort Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation
dc.creator.fl_str_mv Gómez Contreras, Paula Andrea
Figueroa López, Kelly Johana
Hernández-Fernández, Joaquín
Cortés Rodríguez, Misael
Ortega-Toro, Rodrigo
dc.contributor.author.spa.fl_str_mv Gómez Contreras, Paula Andrea
Figueroa López, Kelly Johana
Hernández-Fernández, Joaquín
Cortés Rodríguez, Misael
Ortega-Toro, Rodrigo
dc.subject.proposal.eng.fl_str_mv Physicochemical properties
Shelf life
Lime essential oil
Fennel essential oil
Lavender essential oil
topic Physicochemical properties
Shelf life
Lime essential oil
Fennel essential oil
Lavender essential oil
description Every year the world loses about 50% of fruits and vegetables post-harvest and in the supply chain. The use of biodegradable coatings and films with antioxidant properties has been considered an excellent alternative to extend the shelf life of food. Therefore, the objective of this work was to develop a coating based on yam (Dioscorea rotundata L.) starch-containing lime, fennel, and lavender essential oils to extend the shelf life of strawberries (Fragaria vesca l.). The tensile properties, barrier properties (water vapour permeability (WVP) and oxygen permeability (OP)), moisture content, water-solubility, absorption capacity, water contact angle, optical properties, the antioxidant activity of the resultant starch-based coatings were evaluated. After that, the active properties of the coatings were assessed on strawberries inoculated with Aspergillus niger during 14 days of storage at 25 °C. The results showed that the incorporation of essential oils improved the elongation and WVP and provided antioxidant capacity and antimicrobial activity in the films. In particular, the essential oil of lime showed higher antioxidant activity. This fact caused the unwanted modification of other properties, such as the decrease in tensile strength, elastic modulus and increase in OP. The present study revealed the potential use of lime, fennel, and lavender essential oils incorporated into a polymeric yam starch matrix to produce biodegradable active films (antioxidant and antimicrobial). Obtained films showed to be a viable alternative to increase the shelf life of strawberries and protect them against Aspergillus niger.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11-22
dc.date.accessioned.none.fl_str_mv 2022-03-04T13:43:00Z
dc.date.available.none.fl_str_mv 2022-03-04T13:43:00Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. https://doi.org/10.3390/app112211057
dc.identifier.issn.spa.fl_str_mv 2076-3417
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9048
dc.identifier.url.spa.fl_str_mv https://doi.org/10.3390/app112211057
dc.identifier.doi.spa.fl_str_mv 10.3390/app112211057
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. https://doi.org/10.3390/app112211057
2076-3417
10.3390/app112211057
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9048
https://doi.org/10.3390/app112211057
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Applied Sciences (Switzerland)
dc.relation.references.spa.fl_str_mv 1. Álvarez-Hernández, M.H.; Artés-Hernández, F.; Ávalos-Belmontes, F. Current Scenario of Adsorbent Materials Used in Ethylene Scavenging Systems to Extend Fruit and Vegetable Postharvest Life. Food Bioprocess Technol. 2018, 11, 511–525. [CrossRef]
2. Abad, C.F.A.; Álvarez, L.S.J.; Mora, E.D.C. Effect of the roof (Low tunnel) on the productivity of two varieties of strawberry (Fragaria vesca L.) in Cajanuma, Loja. La Granja. Rev. Cienc. Vida 2020, 31, 131–141. [CrossRef]
3. Mathabe, P.M.; Belay, Z.A.; Ndlovu, T.; Caleb, O.J. Progress in proteomic profiling of horticultural commodities during postharvest handling and storage: A review. Sci. Hortic. 2020, 261, 108996. [CrossRef]
4. Sowmyashree, A.; Sharma, R.R.; Rudra, S.G. Layer-by-Layer coating of hydrocolloids and mixed plant extract reduces fruit decay and improves postharvest life of nectarine fruits during cold storage. Acta Physiol. Plant. 2021, 43, 112. [CrossRef]
5. Sharma, L.; Saxena, A.; Maity, T. Trends in the manufacture of coatings in the postharvest conservation of fruits and vegetables. In Polymers for Agri-Food Applications; Gutiérrez, T., Ed.; Springer: Cham, Switzerland, 2019. [CrossRef]
6. Sarker, A.; Grift, T.E. Bioactive properties and potential applications of Aloe vera gel edible coating on fresh and minimally processed fruits and vegetables: A review. Food Measure. 2021, 15, 2119–2134. [CrossRef]
7. Rodrigues, F.A.M.; Dos Santos, S.B.F.; de Almeida Lopes, M.M.; Guimarães, D.J.S.; de Oliveira Silva, E.; de Souza, M.D.S.M.; Ricardo, N.M.P.S. Antioxidant films and coatings based on starch and phenolics from Spondias purpurea L. Int. J. Biol. Macromol. 2021, 182, 354–365. [CrossRef] [PubMed]
8. Sánchez López, D.B.; Luna Castellanos, L.L.; Díaz Cabadiaz, A.T.; Pérez Pazos, J.V.; Cadena Torres, J. Identification of fungi associated with dry rot disease of yam under storage conditions. Rev. Investig. Altoandinas 2020, 22, 199–214. [CrossRef]
9. Da Costa, J.C.M.; Miki, K.S.L.; da Silva Ramos, A.; Teixeira-Costa, B.E. Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon 2020, 6, e03718. [CrossRef] [PubMed]
10. Yousuf, B.; Wu, S.; Siddiqui, M.W. Incorporating essential oils or compounds derived thereof into edible coatings: Effect on quality and shelf life of fresh/fresh-cut produce. Trends Food Sci. Technol. 2021, 108, 245–257. [CrossRef]
11. Sotelo-Boyás, M.E.; Correa-Pacheco, Z.N.; Bautista-Baños, S.; Corona-Rangel, M.L. Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT 2017, 77, 15–20. [CrossRef]
12. Campelo, P.H.; Sanches, E.A.; de Barros Fernandes, R.V.; Botrel, D.A.; Borges, S.V. Stability of lime essential oil microparticles produced with protein-carbohydrate blends. Food Res. Int. 2018, 105, 936–944. [CrossRef]
13. Gonçalves, S.M.; Motta, J.F.G.; Ribeiro-Santos, R.; Chávez, D.W.H.; de Melo, N.R. Functional and antimicrobial properties of cellulose acetate films incorporated with sweet fennel essential oil and plasticizers. Curr. Res. Food Sci. 2020, 3, 1–8. [CrossRef] [PubMed]
14. Sun, Y.; Zhang, M.; Bhandari, B.; Bai, B. Nanoemulsion-Based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application. Food Control 2021, 127, 108151. [CrossRef]
15. Sun, X.; Wang, J.; Zhang, H.; Dong, M.; Li, L.; Jia, P.; Wang, L. Development of functional gelatin-based composite films incorporating oil-in-water lavender essential oil nano-emulsions: Effects on physicochemical properties and cherry tomatoes preservation. LWT 2021, 142, 110987. [CrossRef]
16. Yuan, C.; Wang, Y.; Liu, Y.; Cui, B. Physicochemical characterization and antibacterial activity assessment of lavender essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Ind. Crop. Prod. 2019, 130, 104–110. [CrossRef]
17. Jiménez, A.; Sánchez-González, L.; Desobry, S.; Chiralt, A.; Tehrany, E.A. Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocoll. 2014, 35, 159–169. [CrossRef]
18. McHugh, T.H.; Avena-Bustillos, R.; Krochta, J.M. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 1993, 58, 899–903. [CrossRef]
19. Hutchings, J.B. Food Colour and Appearance; Springer Science & Business Media: Bedford, UK, 2011.
20. American Society for Testing and Materials. ASTM D523, Standard Test Method for Specular Gloss; ASTM International: West Conshohocken, PA, USA, 1999; pp. 523–589.
21. Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [CrossRef]
22. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]
23. Do Evangelho, J.A.; da Silva Dannenberg, G.; Biduski, B.; El Halal, S.L.M.; Kringel, D.H.; Gularte, M.A.; da Rosa Zavareze, E. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydr. Polym. 2019, 222, 114981. [CrossRef] [PubMed]
24. Souza, A.C.; Goto, G.E.O.; Mainardi, J.A.; Coelho, A.C.V.; Tadini, C.C. Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT Food Sci. Technol. 2013, 54, 346–352. [CrossRef]
25. Song, X.; Zuo, G.; Chen, F. Effect of essential oil and surfactant on the physicaland antimicrobial properties of corn and wheatstarch films. Biol. Macromol. 2018, 107, 1302–1309. [CrossRef]
26. Villabona-Ortiz, A.; Tejada-Tovar, C.; Ortega-Toro, R. Physicochemical properties of biodegradable films of spine yam (Dioscorea rotundata L.), hydroxypropylmethylcellulose and clove oil (Syzygium aromaticum). Rev. Mex. Ing. Quím 2020, 19 (Suppl. 1), 315–322. [CrossRef]
27. Wilfer, P.B.; Giridaran, G.; Jeevahan, J.J.; Joseph, G.B.; Kumar, G.S.; Thykattuserry, N.J. Effect of starch type on the film properties of native starch based edible films. Mater. Today Proc. 2021, 44, 3903–3907. [CrossRef]
28. Cheng, J.; Wang, H.; Xiao, F.; Xia, L.; Li, L.; Jiang, S. Functional effectiveness of double essential oils@yam starch/microcrystalline cellulose as active antibacterial packaging. Int. J. Biol. Macromol. 2021, 186, 873–885. [CrossRef] [PubMed]
29. Monteiro, M.K.S.; Oliveira, V.R.L.; Santos, F.K.G.; Neto, E.B.; Leite, R.H.L.; Aroucha, E.M.M.; Silva, K.N.O. Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability. Food Res. Int. 2018, 105, 637–644. [CrossRef]
30. Dos Santos Caetano, K.; Lopes, N.A.; Costa, T.M.H.; Brandelli, A.; Rodrigues, E.; Flôres, S.H.; Cladera-Olivera, F. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packag. Shelf Life 2018, 16, 138–147. [CrossRef]
31. Agarwal, S. Major Factors Affecting the Characteristics of Starch based Biopolymer Films. Eur. Polym. J. 2021, 110788. [CrossRef]
32. Ghasemlou, M.; Aliheidari, N.; Fahmi, R.; Shojaee-Aliabadi, S.; Keshavarz, B.; Cran, M.J.; Khaksar, R. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr. Polym. 2013, 98, 1117–1126. [CrossRef]
33. Suput, D.; Lazic, V.; Pezo, L.; Markov, S.; Vastag, Z.; Popovic, L.; Popovic, S. Characterization of starch edible films with different essential oils addition. Pol. J. Food Nutr. Sci. 2016, 66, 277–285. [CrossRef]
34. Vianna, T.C.; Marinho, C.O.; Júnior, L.M.; Ibrahim, S.A.; Vieira, R.F. Essential oils as additives in active starch-based food packaging films: A Review. Int. J. Biol. Macromol. 2021, 128, 1803–1819. [CrossRef]
35. Kavoosi, G.; Dadfar, S.M.M.; Purfard, A.M. Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J. Food Sci. 2013, 78, E244–E250. [CrossRef]
36. Cai, C.; Ma, R.; Duan, M.; Deng, Y.; Liu, T.; Lu, D. Effect of starch film containing thyme essential oil microcapsules on physicochemical activity of mango. LWT 2020, 131, 109700. [CrossRef]
37. Dai, L.; Qiu, C.; Xiong, L.; Sun, Q. Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chem. 2015, 174, 82–88. [CrossRef]
38. Hasan, M.; Rusman, R.; Khaldun, I.; Ardana, L.; Mudatsir, M.; Fansuri, H. Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. Int. J. Biol. Macromol. 2020, 163, 766–775. [CrossRef]
39. Gómez-Contreras, P.; Contreras-Camacho, M.; Avalos-Belmontes, F.; Collazo-Bigliardi, S.; Ortega-Toro, R. Physicochemical properties of composite materials based on thermoplastic yam starch and polylactic acid improved with the addition of epoxidized sesame oil. J. Polym. Environ. 2021, 29, 3324–3334. [CrossRef]
40. Mendes, J.F.; Norcino, L.B.; Martins, H.H.A.; Manrich, A.; Otoni, C.G.; Carvalho, E.E.N.; Mattoso, L.H.C. Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocoll. 2020, 100, 105428. [CrossRef]
41. Sánchez-González, L.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. J. Food Eng. 2011, 105, 246–253. [CrossRef]
42. Figueroa-Lopez, K.J.; Torres-Giner, S.; Angulo, I.; Pardo-Figuerez, M.; Escuin, J.M.; Bourbon, A.I.; Lagaron, J.M. Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. Nanomaterials 2020, 10, 2356. [CrossRef] [PubMed]
43. Hui, L.; He, L.; Huan, L.; XiaoLan, L.; AiGuo, Z. Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis-related bacteria. Afr. J. Microbiol. Res. 2010, 4, 309–313. [CrossRef]
44. Cruz-Valenzuela, M.R.; Tapia-Rodriguez, M.R.; Vazquez-Armenta, F.J.; Silva-Espinoza, B.A.; Ayala-Zavala, J.F. Lime (Citrus aurantifolia) oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 531–537.[CrossRef]
45. Akolade, J.O.; Nasir-Naeem, K.O.; Swanepoel, A.; Yusuf, A.A.; Balogun, M.; Labuschagne, P. CO2 -assisted production of polyethylene glycol/lauric acid microparticles for extended release of Citrus aurantifolia essential oil. J. CO2 Util. 2020, 38, 375–384. [CrossRef]
46. Al-Aamri, M.S.; Al-Abousi, N.M.; Al-Jabri, S.S.; Alam, T.; Khan, S.A. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman. J. Taibah Univ. Med Sci. 2018, 13, 108–112. [CrossRef]
47. Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and antioxidant performance of various essential oils and natural extracts and their incorporation into biowaste derived poly (3-hydroxybutyrate-co-3-hydroxyvalerate) layers made from electrospun ultrathin fibers. Nanomaterials 2019, 9, 144. [CrossRef] [PubMed]
48. Zhang, L.; Zhao, S.; Lai, S.; Chen, F.; Yang, H. Combined effects of ultrasound and calcium on the chelate-soluble pectin and quality of strawberries during storage. Carbohydr. Polym. 2018, 200, 427–435. [CrossRef] [PubMed]
49. Arroyo, B.J.; Bezerra, A.C.; Oliveira, L.L.; Arroyo, S.J.; de Melo, E.A.; Santos, A.M.P. Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chem. 2020, 309, 125566. [CrossRef]
50. De Aquino, A.B.; Blank, A.F.; de Aquino Santana, L.C.L. Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem. 2015, 171, 108–116. [CrossRef] [PubMed]
51. Issa, A.; Ibrahim, S.A.; Tahergorabi, R. Impact of sweet potato starch-based nanocomposite films activated with thyme essential oil on the shelf-life of baby spinach leaves. Foods 2017, 6, 43. [CrossRef]
dc.relation.citationendpage.spa.fl_str_mv 15
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 22
dc.relation.citationvolume.spa.fl_str_mv 11
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI Multidisciplinary Digital Publishing Institute
dc.publisher.place.spa.fl_str_mv Switzerland
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2076-3417/11/22/11057
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/9048/1/Effect%20of%20different%20essential%20oils%20on%20the%20properties%20of%20edible%20coatings%20based%20on%20yam.pdf
https://repositorio.cuc.edu.co/bitstream/11323/9048/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/9048/3/Effect%20of%20different%20essential%20oils%20on%20the%20properties%20of%20edible%20coatings%20based%20on%20yam.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/9048/4/Effect%20of%20different%20essential%20oils%20on%20the%20properties%20of%20edible%20coatings%20based%20on%20yam.pdf.jpg
bitstream.checksum.fl_str_mv 9b01afaccb83f6267322a4075a612416
e30e9215131d99561d40d6b0abbe9bad
029cef2dac3e4a25fc74e3cf5cf10d64
521f0ebee3795fb7a1a00961e920e68a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400128817496064
spelling Gómez Contreras, Paula Andrea77b8b6a065de23f8fabba6896c439496600Figueroa López, Kelly Johanaafbbb9a10f238acf3d69677db2827370600Hernández-Fernández, Joaquína57b719bb33ae439cee8967fe8416de3Cortés Rodríguez, Misael9f1493f5d014b108368000a4b02a8f78600Ortega-Toro, Rodrigo68e580c99bf5d6a657f8b24fb6a85a0f6002022-03-04T13:43:00Z2022-03-04T13:43:00Z2021-11-22Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. https://doi.org/10.3390/app1122110572076-3417https://hdl.handle.net/11323/9048https://doi.org/10.3390/app11221105710.3390/app112211057Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Every year the world loses about 50% of fruits and vegetables post-harvest and in the supply chain. The use of biodegradable coatings and films with antioxidant properties has been considered an excellent alternative to extend the shelf life of food. Therefore, the objective of this work was to develop a coating based on yam (Dioscorea rotundata L.) starch-containing lime, fennel, and lavender essential oils to extend the shelf life of strawberries (Fragaria vesca l.). The tensile properties, barrier properties (water vapour permeability (WVP) and oxygen permeability (OP)), moisture content, water-solubility, absorption capacity, water contact angle, optical properties, the antioxidant activity of the resultant starch-based coatings were evaluated. After that, the active properties of the coatings were assessed on strawberries inoculated with Aspergillus niger during 14 days of storage at 25 °C. The results showed that the incorporation of essential oils improved the elongation and WVP and provided antioxidant capacity and antimicrobial activity in the films. In particular, the essential oil of lime showed higher antioxidant activity. This fact caused the unwanted modification of other properties, such as the decrease in tensile strength, elastic modulus and increase in OP. The present study revealed the potential use of lime, fennel, and lavender essential oils incorporated into a polymeric yam starch matrix to produce biodegradable active films (antioxidant and antimicrobial). Obtained films showed to be a viable alternative to increase the shelf life of strawberries and protect them against Aspergillus niger.15 páginasapplication/pdfengMDPI Multidisciplinary Digital Publishing InstituteSwitzerlandAtribución 4.0 Internacional (CC BY 4.0)© 2021 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.mdpi.com/2076-3417/11/22/11057Applied Sciences (Switzerland)1. Álvarez-Hernández, M.H.; Artés-Hernández, F.; Ávalos-Belmontes, F. Current Scenario of Adsorbent Materials Used in Ethylene Scavenging Systems to Extend Fruit and Vegetable Postharvest Life. Food Bioprocess Technol. 2018, 11, 511–525. [CrossRef]2. Abad, C.F.A.; Álvarez, L.S.J.; Mora, E.D.C. Effect of the roof (Low tunnel) on the productivity of two varieties of strawberry (Fragaria vesca L.) in Cajanuma, Loja. La Granja. Rev. Cienc. Vida 2020, 31, 131–141. [CrossRef]3. Mathabe, P.M.; Belay, Z.A.; Ndlovu, T.; Caleb, O.J. Progress in proteomic profiling of horticultural commodities during postharvest handling and storage: A review. Sci. Hortic. 2020, 261, 108996. [CrossRef]4. Sowmyashree, A.; Sharma, R.R.; Rudra, S.G. Layer-by-Layer coating of hydrocolloids and mixed plant extract reduces fruit decay and improves postharvest life of nectarine fruits during cold storage. Acta Physiol. Plant. 2021, 43, 112. [CrossRef]5. Sharma, L.; Saxena, A.; Maity, T. Trends in the manufacture of coatings in the postharvest conservation of fruits and vegetables. In Polymers for Agri-Food Applications; Gutiérrez, T., Ed.; Springer: Cham, Switzerland, 2019. [CrossRef]6. Sarker, A.; Grift, T.E. Bioactive properties and potential applications of Aloe vera gel edible coating on fresh and minimally processed fruits and vegetables: A review. Food Measure. 2021, 15, 2119–2134. [CrossRef]7. Rodrigues, F.A.M.; Dos Santos, S.B.F.; de Almeida Lopes, M.M.; Guimarães, D.J.S.; de Oliveira Silva, E.; de Souza, M.D.S.M.; Ricardo, N.M.P.S. Antioxidant films and coatings based on starch and phenolics from Spondias purpurea L. Int. J. Biol. Macromol. 2021, 182, 354–365. [CrossRef] [PubMed]8. Sánchez López, D.B.; Luna Castellanos, L.L.; Díaz Cabadiaz, A.T.; Pérez Pazos, J.V.; Cadena Torres, J. Identification of fungi associated with dry rot disease of yam under storage conditions. Rev. Investig. Altoandinas 2020, 22, 199–214. [CrossRef]9. Da Costa, J.C.M.; Miki, K.S.L.; da Silva Ramos, A.; Teixeira-Costa, B.E. Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon 2020, 6, e03718. [CrossRef] [PubMed]10. Yousuf, B.; Wu, S.; Siddiqui, M.W. Incorporating essential oils or compounds derived thereof into edible coatings: Effect on quality and shelf life of fresh/fresh-cut produce. Trends Food Sci. Technol. 2021, 108, 245–257. [CrossRef]11. Sotelo-Boyás, M.E.; Correa-Pacheco, Z.N.; Bautista-Baños, S.; Corona-Rangel, M.L. Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT 2017, 77, 15–20. [CrossRef]12. Campelo, P.H.; Sanches, E.A.; de Barros Fernandes, R.V.; Botrel, D.A.; Borges, S.V. Stability of lime essential oil microparticles produced with protein-carbohydrate blends. Food Res. Int. 2018, 105, 936–944. [CrossRef]13. Gonçalves, S.M.; Motta, J.F.G.; Ribeiro-Santos, R.; Chávez, D.W.H.; de Melo, N.R. Functional and antimicrobial properties of cellulose acetate films incorporated with sweet fennel essential oil and plasticizers. Curr. Res. Food Sci. 2020, 3, 1–8. [CrossRef] [PubMed]14. Sun, Y.; Zhang, M.; Bhandari, B.; Bai, B. Nanoemulsion-Based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application. Food Control 2021, 127, 108151. [CrossRef]15. Sun, X.; Wang, J.; Zhang, H.; Dong, M.; Li, L.; Jia, P.; Wang, L. Development of functional gelatin-based composite films incorporating oil-in-water lavender essential oil nano-emulsions: Effects on physicochemical properties and cherry tomatoes preservation. LWT 2021, 142, 110987. [CrossRef]16. Yuan, C.; Wang, Y.; Liu, Y.; Cui, B. Physicochemical characterization and antibacterial activity assessment of lavender essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Ind. Crop. Prod. 2019, 130, 104–110. [CrossRef]17. Jiménez, A.; Sánchez-González, L.; Desobry, S.; Chiralt, A.; Tehrany, E.A. Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocoll. 2014, 35, 159–169. [CrossRef]18. McHugh, T.H.; Avena-Bustillos, R.; Krochta, J.M. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 1993, 58, 899–903. [CrossRef]19. Hutchings, J.B. Food Colour and Appearance; Springer Science & Business Media: Bedford, UK, 2011.20. American Society for Testing and Materials. ASTM D523, Standard Test Method for Specular Gloss; ASTM International: West Conshohocken, PA, USA, 1999; pp. 523–589.21. Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [CrossRef]22. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]23. Do Evangelho, J.A.; da Silva Dannenberg, G.; Biduski, B.; El Halal, S.L.M.; Kringel, D.H.; Gularte, M.A.; da Rosa Zavareze, E. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydr. Polym. 2019, 222, 114981. [CrossRef] [PubMed]24. Souza, A.C.; Goto, G.E.O.; Mainardi, J.A.; Coelho, A.C.V.; Tadini, C.C. Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT Food Sci. Technol. 2013, 54, 346–352. [CrossRef]25. Song, X.; Zuo, G.; Chen, F. Effect of essential oil and surfactant on the physicaland antimicrobial properties of corn and wheatstarch films. Biol. Macromol. 2018, 107, 1302–1309. [CrossRef]26. Villabona-Ortiz, A.; Tejada-Tovar, C.; Ortega-Toro, R. Physicochemical properties of biodegradable films of spine yam (Dioscorea rotundata L.), hydroxypropylmethylcellulose and clove oil (Syzygium aromaticum). Rev. Mex. Ing. Quím 2020, 19 (Suppl. 1), 315–322. [CrossRef]27. Wilfer, P.B.; Giridaran, G.; Jeevahan, J.J.; Joseph, G.B.; Kumar, G.S.; Thykattuserry, N.J. Effect of starch type on the film properties of native starch based edible films. Mater. Today Proc. 2021, 44, 3903–3907. [CrossRef]28. Cheng, J.; Wang, H.; Xiao, F.; Xia, L.; Li, L.; Jiang, S. Functional effectiveness of double essential oils@yam starch/microcrystalline cellulose as active antibacterial packaging. Int. J. Biol. Macromol. 2021, 186, 873–885. [CrossRef] [PubMed]29. Monteiro, M.K.S.; Oliveira, V.R.L.; Santos, F.K.G.; Neto, E.B.; Leite, R.H.L.; Aroucha, E.M.M.; Silva, K.N.O. Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability. Food Res. Int. 2018, 105, 637–644. [CrossRef]30. Dos Santos Caetano, K.; Lopes, N.A.; Costa, T.M.H.; Brandelli, A.; Rodrigues, E.; Flôres, S.H.; Cladera-Olivera, F. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packag. Shelf Life 2018, 16, 138–147. [CrossRef]31. Agarwal, S. Major Factors Affecting the Characteristics of Starch based Biopolymer Films. Eur. Polym. J. 2021, 110788. [CrossRef]32. Ghasemlou, M.; Aliheidari, N.; Fahmi, R.; Shojaee-Aliabadi, S.; Keshavarz, B.; Cran, M.J.; Khaksar, R. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr. Polym. 2013, 98, 1117–1126. [CrossRef]33. Suput, D.; Lazic, V.; Pezo, L.; Markov, S.; Vastag, Z.; Popovic, L.; Popovic, S. Characterization of starch edible films with different essential oils addition. Pol. J. Food Nutr. Sci. 2016, 66, 277–285. [CrossRef]34. Vianna, T.C.; Marinho, C.O.; Júnior, L.M.; Ibrahim, S.A.; Vieira, R.F. Essential oils as additives in active starch-based food packaging films: A Review. Int. J. Biol. Macromol. 2021, 128, 1803–1819. [CrossRef]35. Kavoosi, G.; Dadfar, S.M.M.; Purfard, A.M. Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J. Food Sci. 2013, 78, E244–E250. [CrossRef]36. Cai, C.; Ma, R.; Duan, M.; Deng, Y.; Liu, T.; Lu, D. Effect of starch film containing thyme essential oil microcapsules on physicochemical activity of mango. LWT 2020, 131, 109700. [CrossRef]37. Dai, L.; Qiu, C.; Xiong, L.; Sun, Q. Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chem. 2015, 174, 82–88. [CrossRef]38. Hasan, M.; Rusman, R.; Khaldun, I.; Ardana, L.; Mudatsir, M.; Fansuri, H. Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. Int. J. Biol. Macromol. 2020, 163, 766–775. [CrossRef]39. Gómez-Contreras, P.; Contreras-Camacho, M.; Avalos-Belmontes, F.; Collazo-Bigliardi, S.; Ortega-Toro, R. Physicochemical properties of composite materials based on thermoplastic yam starch and polylactic acid improved with the addition of epoxidized sesame oil. J. Polym. Environ. 2021, 29, 3324–3334. [CrossRef]40. Mendes, J.F.; Norcino, L.B.; Martins, H.H.A.; Manrich, A.; Otoni, C.G.; Carvalho, E.E.N.; Mattoso, L.H.C. Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocoll. 2020, 100, 105428. [CrossRef]41. Sánchez-González, L.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. J. Food Eng. 2011, 105, 246–253. [CrossRef]42. Figueroa-Lopez, K.J.; Torres-Giner, S.; Angulo, I.; Pardo-Figuerez, M.; Escuin, J.M.; Bourbon, A.I.; Lagaron, J.M. Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. Nanomaterials 2020, 10, 2356. [CrossRef] [PubMed]43. Hui, L.; He, L.; Huan, L.; XiaoLan, L.; AiGuo, Z. Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis-related bacteria. Afr. J. Microbiol. Res. 2010, 4, 309–313. [CrossRef]44. Cruz-Valenzuela, M.R.; Tapia-Rodriguez, M.R.; Vazquez-Armenta, F.J.; Silva-Espinoza, B.A.; Ayala-Zavala, J.F. Lime (Citrus aurantifolia) oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 531–537.[CrossRef]45. Akolade, J.O.; Nasir-Naeem, K.O.; Swanepoel, A.; Yusuf, A.A.; Balogun, M.; Labuschagne, P. CO2 -assisted production of polyethylene glycol/lauric acid microparticles for extended release of Citrus aurantifolia essential oil. J. CO2 Util. 2020, 38, 375–384. [CrossRef]46. Al-Aamri, M.S.; Al-Abousi, N.M.; Al-Jabri, S.S.; Alam, T.; Khan, S.A. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman. J. Taibah Univ. Med Sci. 2018, 13, 108–112. [CrossRef]47. Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and antioxidant performance of various essential oils and natural extracts and their incorporation into biowaste derived poly (3-hydroxybutyrate-co-3-hydroxyvalerate) layers made from electrospun ultrathin fibers. Nanomaterials 2019, 9, 144. [CrossRef] [PubMed]48. Zhang, L.; Zhao, S.; Lai, S.; Chen, F.; Yang, H. Combined effects of ultrasound and calcium on the chelate-soluble pectin and quality of strawberries during storage. Carbohydr. Polym. 2018, 200, 427–435. [CrossRef] [PubMed]49. Arroyo, B.J.; Bezerra, A.C.; Oliveira, L.L.; Arroyo, S.J.; de Melo, E.A.; Santos, A.M.P. Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chem. 2020, 309, 125566. [CrossRef]50. De Aquino, A.B.; Blank, A.F.; de Aquino Santana, L.C.L. Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem. 2015, 171, 108–116. [CrossRef] [PubMed]51. Issa, A.; Ibrahim, S.A.; Tahergorabi, R. Impact of sweet potato starch-based nanocomposite films activated with thyme essential oil on the shelf-life of baby spinach leaves. Foods 2017, 6, 43. [CrossRef]1512211Physicochemical propertiesShelf lifeLime essential oilFennel essential oilLavender essential oilORIGINALEffect of different essential oils on the properties of edible coatings based on yam.pdfEffect of different essential oils on the properties of edible coatings based on yam.pdfapplication/pdf745552https://repositorio.cuc.edu.co/bitstream/11323/9048/1/Effect%20of%20different%20essential%20oils%20on%20the%20properties%20of%20edible%20coatings%20based%20on%20yam.pdf9b01afaccb83f6267322a4075a612416MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/9048/2/license.txte30e9215131d99561d40d6b0abbe9badMD52open accessTEXTEffect of different essential oils on the properties of edible coatings based on yam.pdf.txtEffect of different essential oils on the properties of edible coatings based on yam.pdf.txttext/plain61007https://repositorio.cuc.edu.co/bitstream/11323/9048/3/Effect%20of%20different%20essential%20oils%20on%20the%20properties%20of%20edible%20coatings%20based%20on%20yam.pdf.txt029cef2dac3e4a25fc74e3cf5cf10d64MD53open accessTHUMBNAILEffect of different essential oils on the properties of edible coatings based on yam.pdf.jpgEffect of different essential oils on the properties of edible coatings based on yam.pdf.jpgimage/jpeg16636https://repositorio.cuc.edu.co/bitstream/11323/9048/4/Effect%20of%20different%20essential%20oils%20on%20the%20properties%20of%20edible%20coatings%20based%20on%20yam.pdf.jpg521f0ebee3795fb7a1a00961e920e68aMD54open access11323/9048oai:repositorio.cuc.edu.co:11323/90482023-12-14 14:54:50.676An error occurred on the license name.|||https://creativecommons.org/licenses/by/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==