Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation
Every year the world loses about 50% of fruits and vegetables post-harvest and in the supply chain. The use of biodegradable coatings and films with antioxidant properties has been considered an excellent alternative to extend the shelf life of food. Therefore, the objective of this work was to deve...
- Autores:
-
Gómez Contreras, Paula Andrea
Figueroa López, Kelly Johana
Hernández-Fernández, Joaquín
Cortés Rodríguez, Misael
Ortega-Toro, Rodrigo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9048
- Acceso en línea:
- https://hdl.handle.net/11323/9048
https://doi.org/10.3390/app112211057
https://repositorio.cuc.edu.co/
- Palabra clave:
- Physicochemical properties
Shelf life
Lime essential oil
Fennel essential oil
Lavender essential oil
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_bae3f6cc3f5ada8fdd2ddce555742e13 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9048 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation |
title |
Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation |
spellingShingle |
Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation Physicochemical properties Shelf life Lime essential oil Fennel essential oil Lavender essential oil |
title_short |
Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation |
title_full |
Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation |
title_fullStr |
Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation |
title_full_unstemmed |
Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation |
title_sort |
Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation |
dc.creator.fl_str_mv |
Gómez Contreras, Paula Andrea Figueroa López, Kelly Johana Hernández-Fernández, Joaquín Cortés Rodríguez, Misael Ortega-Toro, Rodrigo |
dc.contributor.author.spa.fl_str_mv |
Gómez Contreras, Paula Andrea Figueroa López, Kelly Johana Hernández-Fernández, Joaquín Cortés Rodríguez, Misael Ortega-Toro, Rodrigo |
dc.subject.proposal.eng.fl_str_mv |
Physicochemical properties Shelf life Lime essential oil Fennel essential oil Lavender essential oil |
topic |
Physicochemical properties Shelf life Lime essential oil Fennel essential oil Lavender essential oil |
description |
Every year the world loses about 50% of fruits and vegetables post-harvest and in the supply chain. The use of biodegradable coatings and films with antioxidant properties has been considered an excellent alternative to extend the shelf life of food. Therefore, the objective of this work was to develop a coating based on yam (Dioscorea rotundata L.) starch-containing lime, fennel, and lavender essential oils to extend the shelf life of strawberries (Fragaria vesca l.). The tensile properties, barrier properties (water vapour permeability (WVP) and oxygen permeability (OP)), moisture content, water-solubility, absorption capacity, water contact angle, optical properties, the antioxidant activity of the resultant starch-based coatings were evaluated. After that, the active properties of the coatings were assessed on strawberries inoculated with Aspergillus niger during 14 days of storage at 25 °C. The results showed that the incorporation of essential oils improved the elongation and WVP and provided antioxidant capacity and antimicrobial activity in the films. In particular, the essential oil of lime showed higher antioxidant activity. This fact caused the unwanted modification of other properties, such as the decrease in tensile strength, elastic modulus and increase in OP. The present study revealed the potential use of lime, fennel, and lavender essential oils incorporated into a polymeric yam starch matrix to produce biodegradable active films (antioxidant and antimicrobial). Obtained films showed to be a viable alternative to increase the shelf life of strawberries and protect them against Aspergillus niger. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11-22 |
dc.date.accessioned.none.fl_str_mv |
2022-03-04T13:43:00Z |
dc.date.available.none.fl_str_mv |
2022-03-04T13:43:00Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. https://doi.org/10.3390/app112211057 |
dc.identifier.issn.spa.fl_str_mv |
2076-3417 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9048 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.3390/app112211057 |
dc.identifier.doi.spa.fl_str_mv |
10.3390/app112211057 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. https://doi.org/10.3390/app112211057 2076-3417 10.3390/app112211057 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9048 https://doi.org/10.3390/app112211057 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Applied Sciences (Switzerland) |
dc.relation.references.spa.fl_str_mv |
1. Álvarez-Hernández, M.H.; Artés-Hernández, F.; Ávalos-Belmontes, F. Current Scenario of Adsorbent Materials Used in Ethylene Scavenging Systems to Extend Fruit and Vegetable Postharvest Life. Food Bioprocess Technol. 2018, 11, 511–525. [CrossRef] 2. Abad, C.F.A.; Álvarez, L.S.J.; Mora, E.D.C. Effect of the roof (Low tunnel) on the productivity of two varieties of strawberry (Fragaria vesca L.) in Cajanuma, Loja. La Granja. Rev. Cienc. Vida 2020, 31, 131–141. [CrossRef] 3. Mathabe, P.M.; Belay, Z.A.; Ndlovu, T.; Caleb, O.J. Progress in proteomic profiling of horticultural commodities during postharvest handling and storage: A review. Sci. Hortic. 2020, 261, 108996. [CrossRef] 4. Sowmyashree, A.; Sharma, R.R.; Rudra, S.G. Layer-by-Layer coating of hydrocolloids and mixed plant extract reduces fruit decay and improves postharvest life of nectarine fruits during cold storage. Acta Physiol. Plant. 2021, 43, 112. [CrossRef] 5. Sharma, L.; Saxena, A.; Maity, T. Trends in the manufacture of coatings in the postharvest conservation of fruits and vegetables. In Polymers for Agri-Food Applications; Gutiérrez, T., Ed.; Springer: Cham, Switzerland, 2019. [CrossRef] 6. Sarker, A.; Grift, T.E. Bioactive properties and potential applications of Aloe vera gel edible coating on fresh and minimally processed fruits and vegetables: A review. Food Measure. 2021, 15, 2119–2134. [CrossRef] 7. Rodrigues, F.A.M.; Dos Santos, S.B.F.; de Almeida Lopes, M.M.; Guimarães, D.J.S.; de Oliveira Silva, E.; de Souza, M.D.S.M.; Ricardo, N.M.P.S. Antioxidant films and coatings based on starch and phenolics from Spondias purpurea L. Int. J. Biol. Macromol. 2021, 182, 354–365. [CrossRef] [PubMed] 8. Sánchez López, D.B.; Luna Castellanos, L.L.; Díaz Cabadiaz, A.T.; Pérez Pazos, J.V.; Cadena Torres, J. Identification of fungi associated with dry rot disease of yam under storage conditions. Rev. Investig. Altoandinas 2020, 22, 199–214. [CrossRef] 9. Da Costa, J.C.M.; Miki, K.S.L.; da Silva Ramos, A.; Teixeira-Costa, B.E. Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon 2020, 6, e03718. [CrossRef] [PubMed] 10. Yousuf, B.; Wu, S.; Siddiqui, M.W. Incorporating essential oils or compounds derived thereof into edible coatings: Effect on quality and shelf life of fresh/fresh-cut produce. Trends Food Sci. Technol. 2021, 108, 245–257. [CrossRef] 11. Sotelo-Boyás, M.E.; Correa-Pacheco, Z.N.; Bautista-Baños, S.; Corona-Rangel, M.L. Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT 2017, 77, 15–20. [CrossRef] 12. Campelo, P.H.; Sanches, E.A.; de Barros Fernandes, R.V.; Botrel, D.A.; Borges, S.V. Stability of lime essential oil microparticles produced with protein-carbohydrate blends. Food Res. Int. 2018, 105, 936–944. [CrossRef] 13. Gonçalves, S.M.; Motta, J.F.G.; Ribeiro-Santos, R.; Chávez, D.W.H.; de Melo, N.R. Functional and antimicrobial properties of cellulose acetate films incorporated with sweet fennel essential oil and plasticizers. Curr. Res. Food Sci. 2020, 3, 1–8. [CrossRef] [PubMed] 14. Sun, Y.; Zhang, M.; Bhandari, B.; Bai, B. Nanoemulsion-Based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application. Food Control 2021, 127, 108151. [CrossRef] 15. Sun, X.; Wang, J.; Zhang, H.; Dong, M.; Li, L.; Jia, P.; Wang, L. Development of functional gelatin-based composite films incorporating oil-in-water lavender essential oil nano-emulsions: Effects on physicochemical properties and cherry tomatoes preservation. LWT 2021, 142, 110987. [CrossRef] 16. Yuan, C.; Wang, Y.; Liu, Y.; Cui, B. Physicochemical characterization and antibacterial activity assessment of lavender essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Ind. Crop. Prod. 2019, 130, 104–110. [CrossRef] 17. Jiménez, A.; Sánchez-González, L.; Desobry, S.; Chiralt, A.; Tehrany, E.A. Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocoll. 2014, 35, 159–169. [CrossRef] 18. McHugh, T.H.; Avena-Bustillos, R.; Krochta, J.M. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 1993, 58, 899–903. [CrossRef] 19. Hutchings, J.B. Food Colour and Appearance; Springer Science & Business Media: Bedford, UK, 2011. 20. American Society for Testing and Materials. ASTM D523, Standard Test Method for Specular Gloss; ASTM International: West Conshohocken, PA, USA, 1999; pp. 523–589. 21. Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [CrossRef] 22. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef] 23. Do Evangelho, J.A.; da Silva Dannenberg, G.; Biduski, B.; El Halal, S.L.M.; Kringel, D.H.; Gularte, M.A.; da Rosa Zavareze, E. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydr. Polym. 2019, 222, 114981. [CrossRef] [PubMed] 24. Souza, A.C.; Goto, G.E.O.; Mainardi, J.A.; Coelho, A.C.V.; Tadini, C.C. Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT Food Sci. Technol. 2013, 54, 346–352. [CrossRef] 25. Song, X.; Zuo, G.; Chen, F. Effect of essential oil and surfactant on the physicaland antimicrobial properties of corn and wheatstarch films. Biol. Macromol. 2018, 107, 1302–1309. [CrossRef] 26. Villabona-Ortiz, A.; Tejada-Tovar, C.; Ortega-Toro, R. Physicochemical properties of biodegradable films of spine yam (Dioscorea rotundata L.), hydroxypropylmethylcellulose and clove oil (Syzygium aromaticum). Rev. Mex. Ing. Quím 2020, 19 (Suppl. 1), 315–322. [CrossRef] 27. Wilfer, P.B.; Giridaran, G.; Jeevahan, J.J.; Joseph, G.B.; Kumar, G.S.; Thykattuserry, N.J. Effect of starch type on the film properties of native starch based edible films. Mater. Today Proc. 2021, 44, 3903–3907. [CrossRef] 28. Cheng, J.; Wang, H.; Xiao, F.; Xia, L.; Li, L.; Jiang, S. Functional effectiveness of double essential oils@yam starch/microcrystalline cellulose as active antibacterial packaging. Int. J. Biol. Macromol. 2021, 186, 873–885. [CrossRef] [PubMed] 29. Monteiro, M.K.S.; Oliveira, V.R.L.; Santos, F.K.G.; Neto, E.B.; Leite, R.H.L.; Aroucha, E.M.M.; Silva, K.N.O. Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability. Food Res. Int. 2018, 105, 637–644. [CrossRef] 30. Dos Santos Caetano, K.; Lopes, N.A.; Costa, T.M.H.; Brandelli, A.; Rodrigues, E.; Flôres, S.H.; Cladera-Olivera, F. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packag. Shelf Life 2018, 16, 138–147. [CrossRef] 31. Agarwal, S. Major Factors Affecting the Characteristics of Starch based Biopolymer Films. Eur. Polym. J. 2021, 110788. [CrossRef] 32. Ghasemlou, M.; Aliheidari, N.; Fahmi, R.; Shojaee-Aliabadi, S.; Keshavarz, B.; Cran, M.J.; Khaksar, R. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr. Polym. 2013, 98, 1117–1126. [CrossRef] 33. Suput, D.; Lazic, V.; Pezo, L.; Markov, S.; Vastag, Z.; Popovic, L.; Popovic, S. Characterization of starch edible films with different essential oils addition. Pol. J. Food Nutr. Sci. 2016, 66, 277–285. [CrossRef] 34. Vianna, T.C.; Marinho, C.O.; Júnior, L.M.; Ibrahim, S.A.; Vieira, R.F. Essential oils as additives in active starch-based food packaging films: A Review. Int. J. Biol. Macromol. 2021, 128, 1803–1819. [CrossRef] 35. Kavoosi, G.; Dadfar, S.M.M.; Purfard, A.M. Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J. Food Sci. 2013, 78, E244–E250. [CrossRef] 36. Cai, C.; Ma, R.; Duan, M.; Deng, Y.; Liu, T.; Lu, D. Effect of starch film containing thyme essential oil microcapsules on physicochemical activity of mango. LWT 2020, 131, 109700. [CrossRef] 37. Dai, L.; Qiu, C.; Xiong, L.; Sun, Q. Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chem. 2015, 174, 82–88. [CrossRef] 38. Hasan, M.; Rusman, R.; Khaldun, I.; Ardana, L.; Mudatsir, M.; Fansuri, H. Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. Int. J. Biol. Macromol. 2020, 163, 766–775. [CrossRef] 39. Gómez-Contreras, P.; Contreras-Camacho, M.; Avalos-Belmontes, F.; Collazo-Bigliardi, S.; Ortega-Toro, R. Physicochemical properties of composite materials based on thermoplastic yam starch and polylactic acid improved with the addition of epoxidized sesame oil. J. Polym. Environ. 2021, 29, 3324–3334. [CrossRef] 40. Mendes, J.F.; Norcino, L.B.; Martins, H.H.A.; Manrich, A.; Otoni, C.G.; Carvalho, E.E.N.; Mattoso, L.H.C. Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocoll. 2020, 100, 105428. [CrossRef] 41. Sánchez-González, L.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. J. Food Eng. 2011, 105, 246–253. [CrossRef] 42. Figueroa-Lopez, K.J.; Torres-Giner, S.; Angulo, I.; Pardo-Figuerez, M.; Escuin, J.M.; Bourbon, A.I.; Lagaron, J.M. Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. Nanomaterials 2020, 10, 2356. [CrossRef] [PubMed] 43. Hui, L.; He, L.; Huan, L.; XiaoLan, L.; AiGuo, Z. Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis-related bacteria. Afr. J. Microbiol. Res. 2010, 4, 309–313. [CrossRef] 44. Cruz-Valenzuela, M.R.; Tapia-Rodriguez, M.R.; Vazquez-Armenta, F.J.; Silva-Espinoza, B.A.; Ayala-Zavala, J.F. Lime (Citrus aurantifolia) oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 531–537.[CrossRef] 45. Akolade, J.O.; Nasir-Naeem, K.O.; Swanepoel, A.; Yusuf, A.A.; Balogun, M.; Labuschagne, P. CO2 -assisted production of polyethylene glycol/lauric acid microparticles for extended release of Citrus aurantifolia essential oil. J. CO2 Util. 2020, 38, 375–384. [CrossRef] 46. Al-Aamri, M.S.; Al-Abousi, N.M.; Al-Jabri, S.S.; Alam, T.; Khan, S.A. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman. J. Taibah Univ. Med Sci. 2018, 13, 108–112. [CrossRef] 47. Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and antioxidant performance of various essential oils and natural extracts and their incorporation into biowaste derived poly (3-hydroxybutyrate-co-3-hydroxyvalerate) layers made from electrospun ultrathin fibers. Nanomaterials 2019, 9, 144. [CrossRef] [PubMed] 48. Zhang, L.; Zhao, S.; Lai, S.; Chen, F.; Yang, H. Combined effects of ultrasound and calcium on the chelate-soluble pectin and quality of strawberries during storage. Carbohydr. Polym. 2018, 200, 427–435. [CrossRef] [PubMed] 49. Arroyo, B.J.; Bezerra, A.C.; Oliveira, L.L.; Arroyo, S.J.; de Melo, E.A.; Santos, A.M.P. Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chem. 2020, 309, 125566. [CrossRef] 50. De Aquino, A.B.; Blank, A.F.; de Aquino Santana, L.C.L. Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem. 2015, 171, 108–116. [CrossRef] [PubMed] 51. Issa, A.; Ibrahim, S.A.; Tahergorabi, R. Impact of sweet potato starch-based nanocomposite films activated with thyme essential oil on the shelf-life of baby spinach leaves. Foods 2017, 6, 43. [CrossRef] |
dc.relation.citationendpage.spa.fl_str_mv |
15 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
22 |
dc.relation.citationvolume.spa.fl_str_mv |
11 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2021 by the authors. Licensee MDPI, Basel, Switzerland. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI Multidisciplinary Digital Publishing Institute |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2076-3417/11/22/11057 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d5537d7d-d3ae-437f-8387-c6d9a843e27d/download https://repositorio.cuc.edu.co/bitstreams/3c5af764-554f-4839-aee5-b60e882379c3/download https://repositorio.cuc.edu.co/bitstreams/e17ba6eb-4e51-452f-8197-31c0e4a9057a/download https://repositorio.cuc.edu.co/bitstreams/6d31466c-6c43-4328-9ae4-ffce26869ce6/download |
bitstream.checksum.fl_str_mv |
9b01afaccb83f6267322a4075a612416 e30e9215131d99561d40d6b0abbe9bad 029cef2dac3e4a25fc74e3cf5cf10d64 521f0ebee3795fb7a1a00961e920e68a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760798701191168 |
spelling |
Gómez Contreras, Paula AndreaFigueroa López, Kelly JohanaHernández-Fernández, JoaquínCortés Rodríguez, MisaelOrtega-Toro, Rodrigo2022-03-04T13:43:00Z2022-03-04T13:43:00Z2021-11-22Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. https://doi.org/10.3390/app1122110572076-3417https://hdl.handle.net/11323/9048https://doi.org/10.3390/app11221105710.3390/app112211057Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Every year the world loses about 50% of fruits and vegetables post-harvest and in the supply chain. The use of biodegradable coatings and films with antioxidant properties has been considered an excellent alternative to extend the shelf life of food. Therefore, the objective of this work was to develop a coating based on yam (Dioscorea rotundata L.) starch-containing lime, fennel, and lavender essential oils to extend the shelf life of strawberries (Fragaria vesca l.). The tensile properties, barrier properties (water vapour permeability (WVP) and oxygen permeability (OP)), moisture content, water-solubility, absorption capacity, water contact angle, optical properties, the antioxidant activity of the resultant starch-based coatings were evaluated. After that, the active properties of the coatings were assessed on strawberries inoculated with Aspergillus niger during 14 days of storage at 25 °C. The results showed that the incorporation of essential oils improved the elongation and WVP and provided antioxidant capacity and antimicrobial activity in the films. In particular, the essential oil of lime showed higher antioxidant activity. This fact caused the unwanted modification of other properties, such as the decrease in tensile strength, elastic modulus and increase in OP. The present study revealed the potential use of lime, fennel, and lavender essential oils incorporated into a polymeric yam starch matrix to produce biodegradable active films (antioxidant and antimicrobial). Obtained films showed to be a viable alternative to increase the shelf life of strawberries and protect them against Aspergillus niger.15 páginasapplication/pdfengMDPI Multidisciplinary Digital Publishing InstituteSwitzerlandAtribución 4.0 Internacional (CC BY 4.0)© 2021 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Effect of different essential oils on the properties of edible coatings based on yam (dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.mdpi.com/2076-3417/11/22/11057Applied Sciences (Switzerland)1. Álvarez-Hernández, M.H.; Artés-Hernández, F.; Ávalos-Belmontes, F. Current Scenario of Adsorbent Materials Used in Ethylene Scavenging Systems to Extend Fruit and Vegetable Postharvest Life. Food Bioprocess Technol. 2018, 11, 511–525. [CrossRef]2. Abad, C.F.A.; Álvarez, L.S.J.; Mora, E.D.C. Effect of the roof (Low tunnel) on the productivity of two varieties of strawberry (Fragaria vesca L.) in Cajanuma, Loja. La Granja. Rev. Cienc. Vida 2020, 31, 131–141. [CrossRef]3. Mathabe, P.M.; Belay, Z.A.; Ndlovu, T.; Caleb, O.J. Progress in proteomic profiling of horticultural commodities during postharvest handling and storage: A review. Sci. Hortic. 2020, 261, 108996. [CrossRef]4. Sowmyashree, A.; Sharma, R.R.; Rudra, S.G. Layer-by-Layer coating of hydrocolloids and mixed plant extract reduces fruit decay and improves postharvest life of nectarine fruits during cold storage. Acta Physiol. Plant. 2021, 43, 112. [CrossRef]5. Sharma, L.; Saxena, A.; Maity, T. Trends in the manufacture of coatings in the postharvest conservation of fruits and vegetables. In Polymers for Agri-Food Applications; Gutiérrez, T., Ed.; Springer: Cham, Switzerland, 2019. [CrossRef]6. Sarker, A.; Grift, T.E. Bioactive properties and potential applications of Aloe vera gel edible coating on fresh and minimally processed fruits and vegetables: A review. Food Measure. 2021, 15, 2119–2134. [CrossRef]7. Rodrigues, F.A.M.; Dos Santos, S.B.F.; de Almeida Lopes, M.M.; Guimarães, D.J.S.; de Oliveira Silva, E.; de Souza, M.D.S.M.; Ricardo, N.M.P.S. Antioxidant films and coatings based on starch and phenolics from Spondias purpurea L. Int. J. Biol. Macromol. 2021, 182, 354–365. [CrossRef] [PubMed]8. Sánchez López, D.B.; Luna Castellanos, L.L.; Díaz Cabadiaz, A.T.; Pérez Pazos, J.V.; Cadena Torres, J. Identification of fungi associated with dry rot disease of yam under storage conditions. Rev. Investig. Altoandinas 2020, 22, 199–214. [CrossRef]9. Da Costa, J.C.M.; Miki, K.S.L.; da Silva Ramos, A.; Teixeira-Costa, B.E. Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon 2020, 6, e03718. [CrossRef] [PubMed]10. Yousuf, B.; Wu, S.; Siddiqui, M.W. Incorporating essential oils or compounds derived thereof into edible coatings: Effect on quality and shelf life of fresh/fresh-cut produce. Trends Food Sci. Technol. 2021, 108, 245–257. [CrossRef]11. Sotelo-Boyás, M.E.; Correa-Pacheco, Z.N.; Bautista-Baños, S.; Corona-Rangel, M.L. Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT 2017, 77, 15–20. [CrossRef]12. Campelo, P.H.; Sanches, E.A.; de Barros Fernandes, R.V.; Botrel, D.A.; Borges, S.V. Stability of lime essential oil microparticles produced with protein-carbohydrate blends. Food Res. Int. 2018, 105, 936–944. [CrossRef]13. Gonçalves, S.M.; Motta, J.F.G.; Ribeiro-Santos, R.; Chávez, D.W.H.; de Melo, N.R. Functional and antimicrobial properties of cellulose acetate films incorporated with sweet fennel essential oil and plasticizers. Curr. Res. Food Sci. 2020, 3, 1–8. [CrossRef] [PubMed]14. Sun, Y.; Zhang, M.; Bhandari, B.; Bai, B. Nanoemulsion-Based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application. Food Control 2021, 127, 108151. [CrossRef]15. Sun, X.; Wang, J.; Zhang, H.; Dong, M.; Li, L.; Jia, P.; Wang, L. Development of functional gelatin-based composite films incorporating oil-in-water lavender essential oil nano-emulsions: Effects on physicochemical properties and cherry tomatoes preservation. LWT 2021, 142, 110987. [CrossRef]16. Yuan, C.; Wang, Y.; Liu, Y.; Cui, B. Physicochemical characterization and antibacterial activity assessment of lavender essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Ind. Crop. Prod. 2019, 130, 104–110. [CrossRef]17. Jiménez, A.; Sánchez-González, L.; Desobry, S.; Chiralt, A.; Tehrany, E.A. Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocoll. 2014, 35, 159–169. [CrossRef]18. McHugh, T.H.; Avena-Bustillos, R.; Krochta, J.M. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 1993, 58, 899–903. [CrossRef]19. Hutchings, J.B. Food Colour and Appearance; Springer Science & Business Media: Bedford, UK, 2011.20. American Society for Testing and Materials. ASTM D523, Standard Test Method for Specular Gloss; ASTM International: West Conshohocken, PA, USA, 1999; pp. 523–589.21. Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [CrossRef]22. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]23. Do Evangelho, J.A.; da Silva Dannenberg, G.; Biduski, B.; El Halal, S.L.M.; Kringel, D.H.; Gularte, M.A.; da Rosa Zavareze, E. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydr. Polym. 2019, 222, 114981. [CrossRef] [PubMed]24. Souza, A.C.; Goto, G.E.O.; Mainardi, J.A.; Coelho, A.C.V.; Tadini, C.C. Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT Food Sci. Technol. 2013, 54, 346–352. [CrossRef]25. Song, X.; Zuo, G.; Chen, F. Effect of essential oil and surfactant on the physicaland antimicrobial properties of corn and wheatstarch films. Biol. Macromol. 2018, 107, 1302–1309. [CrossRef]26. Villabona-Ortiz, A.; Tejada-Tovar, C.; Ortega-Toro, R. Physicochemical properties of biodegradable films of spine yam (Dioscorea rotundata L.), hydroxypropylmethylcellulose and clove oil (Syzygium aromaticum). Rev. Mex. Ing. Quím 2020, 19 (Suppl. 1), 315–322. [CrossRef]27. Wilfer, P.B.; Giridaran, G.; Jeevahan, J.J.; Joseph, G.B.; Kumar, G.S.; Thykattuserry, N.J. Effect of starch type on the film properties of native starch based edible films. Mater. Today Proc. 2021, 44, 3903–3907. [CrossRef]28. Cheng, J.; Wang, H.; Xiao, F.; Xia, L.; Li, L.; Jiang, S. Functional effectiveness of double essential oils@yam starch/microcrystalline cellulose as active antibacterial packaging. Int. J. Biol. Macromol. 2021, 186, 873–885. [CrossRef] [PubMed]29. Monteiro, M.K.S.; Oliveira, V.R.L.; Santos, F.K.G.; Neto, E.B.; Leite, R.H.L.; Aroucha, E.M.M.; Silva, K.N.O. Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability. Food Res. Int. 2018, 105, 637–644. [CrossRef]30. Dos Santos Caetano, K.; Lopes, N.A.; Costa, T.M.H.; Brandelli, A.; Rodrigues, E.; Flôres, S.H.; Cladera-Olivera, F. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packag. Shelf Life 2018, 16, 138–147. [CrossRef]31. Agarwal, S. Major Factors Affecting the Characteristics of Starch based Biopolymer Films. Eur. Polym. J. 2021, 110788. [CrossRef]32. Ghasemlou, M.; Aliheidari, N.; Fahmi, R.; Shojaee-Aliabadi, S.; Keshavarz, B.; Cran, M.J.; Khaksar, R. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr. Polym. 2013, 98, 1117–1126. [CrossRef]33. Suput, D.; Lazic, V.; Pezo, L.; Markov, S.; Vastag, Z.; Popovic, L.; Popovic, S. Characterization of starch edible films with different essential oils addition. Pol. J. Food Nutr. Sci. 2016, 66, 277–285. [CrossRef]34. Vianna, T.C.; Marinho, C.O.; Júnior, L.M.; Ibrahim, S.A.; Vieira, R.F. Essential oils as additives in active starch-based food packaging films: A Review. Int. J. Biol. Macromol. 2021, 128, 1803–1819. [CrossRef]35. Kavoosi, G.; Dadfar, S.M.M.; Purfard, A.M. Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J. Food Sci. 2013, 78, E244–E250. [CrossRef]36. Cai, C.; Ma, R.; Duan, M.; Deng, Y.; Liu, T.; Lu, D. Effect of starch film containing thyme essential oil microcapsules on physicochemical activity of mango. LWT 2020, 131, 109700. [CrossRef]37. Dai, L.; Qiu, C.; Xiong, L.; Sun, Q. Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chem. 2015, 174, 82–88. [CrossRef]38. Hasan, M.; Rusman, R.; Khaldun, I.; Ardana, L.; Mudatsir, M.; Fansuri, H. Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. Int. J. Biol. Macromol. 2020, 163, 766–775. [CrossRef]39. Gómez-Contreras, P.; Contreras-Camacho, M.; Avalos-Belmontes, F.; Collazo-Bigliardi, S.; Ortega-Toro, R. Physicochemical properties of composite materials based on thermoplastic yam starch and polylactic acid improved with the addition of epoxidized sesame oil. J. Polym. Environ. 2021, 29, 3324–3334. [CrossRef]40. Mendes, J.F.; Norcino, L.B.; Martins, H.H.A.; Manrich, A.; Otoni, C.G.; Carvalho, E.E.N.; Mattoso, L.H.C. Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocoll. 2020, 100, 105428. [CrossRef]41. Sánchez-González, L.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. J. Food Eng. 2011, 105, 246–253. [CrossRef]42. Figueroa-Lopez, K.J.; Torres-Giner, S.; Angulo, I.; Pardo-Figuerez, M.; Escuin, J.M.; Bourbon, A.I.; Lagaron, J.M. Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. Nanomaterials 2020, 10, 2356. [CrossRef] [PubMed]43. Hui, L.; He, L.; Huan, L.; XiaoLan, L.; AiGuo, Z. Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis-related bacteria. Afr. J. Microbiol. Res. 2010, 4, 309–313. [CrossRef]44. Cruz-Valenzuela, M.R.; Tapia-Rodriguez, M.R.; Vazquez-Armenta, F.J.; Silva-Espinoza, B.A.; Ayala-Zavala, J.F. Lime (Citrus aurantifolia) oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 531–537.[CrossRef]45. Akolade, J.O.; Nasir-Naeem, K.O.; Swanepoel, A.; Yusuf, A.A.; Balogun, M.; Labuschagne, P. CO2 -assisted production of polyethylene glycol/lauric acid microparticles for extended release of Citrus aurantifolia essential oil. J. CO2 Util. 2020, 38, 375–384. [CrossRef]46. Al-Aamri, M.S.; Al-Abousi, N.M.; Al-Jabri, S.S.; Alam, T.; Khan, S.A. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman. J. Taibah Univ. Med Sci. 2018, 13, 108–112. [CrossRef]47. Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and antioxidant performance of various essential oils and natural extracts and their incorporation into biowaste derived poly (3-hydroxybutyrate-co-3-hydroxyvalerate) layers made from electrospun ultrathin fibers. Nanomaterials 2019, 9, 144. [CrossRef] [PubMed]48. Zhang, L.; Zhao, S.; Lai, S.; Chen, F.; Yang, H. Combined effects of ultrasound and calcium on the chelate-soluble pectin and quality of strawberries during storage. Carbohydr. Polym. 2018, 200, 427–435. [CrossRef] [PubMed]49. Arroyo, B.J.; Bezerra, A.C.; Oliveira, L.L.; Arroyo, S.J.; de Melo, E.A.; Santos, A.M.P. Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chem. 2020, 309, 125566. [CrossRef]50. De Aquino, A.B.; Blank, A.F.; de Aquino Santana, L.C.L. Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem. 2015, 171, 108–116. [CrossRef] [PubMed]51. Issa, A.; Ibrahim, S.A.; Tahergorabi, R. Impact of sweet potato starch-based nanocomposite films activated with thyme essential oil on the shelf-life of baby spinach leaves. Foods 2017, 6, 43. [CrossRef]1512211Physicochemical propertiesShelf lifeLime essential oilFennel essential oilLavender essential oilPublicationORIGINALEffect of different essential oils on the properties of edible coatings based on yam.pdfEffect of different essential oils on the properties of edible coatings based on yam.pdfapplication/pdf745552https://repositorio.cuc.edu.co/bitstreams/d5537d7d-d3ae-437f-8387-c6d9a843e27d/download9b01afaccb83f6267322a4075a612416MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/3c5af764-554f-4839-aee5-b60e882379c3/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTEffect of different essential oils on the properties of edible coatings based on yam.pdf.txtEffect of different essential oils on the properties of edible coatings based on yam.pdf.txttext/plain61007https://repositorio.cuc.edu.co/bitstreams/e17ba6eb-4e51-452f-8197-31c0e4a9057a/download029cef2dac3e4a25fc74e3cf5cf10d64MD53THUMBNAILEffect of different essential oils on the properties of edible coatings based on yam.pdf.jpgEffect of different essential oils on the properties of edible coatings based on yam.pdf.jpgimage/jpeg16636https://repositorio.cuc.edu.co/bitstreams/6d31466c-6c43-4328-9ae4-ffce26869ce6/download521f0ebee3795fb7a1a00961e920e68aMD5411323/9048oai:repositorio.cuc.edu.co:11323/90482024-09-17 12:45:20.905https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |