Sistema de Simulación de la Iluminación Abdominal Basado en Mini Robots
Introducción: Este documento muestra un sistema que simula la iluminación de la escena abdominal en operaciones de laparoscopia utilizando mini robots. Los mini robots estarían atados magnéticamente a la cavidad abdominal y serían manipulados por un brazo robot externo. Dos algoritmos son probados e...
- Autores:
-
Chaparro Velasco, María Cristina
Sabater Navarro, José María
Vivas Abán, Óscar Andrés
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12280
- Palabra clave:
- image analysis
mini lighting robots
mini robots
surgical robotics
Unity3D
análisis de imagen
mini robots
mini robots lumínicos
robótica quirúrgica
Unity3d
- Rights
- openAccess
- License
- INGE CUC - 2021
id |
RCUC2_b4b015c63550f13c6525967e028bbf8e |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12280 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sistema de Simulación de la Iluminación Abdominal Basado en Mini Robots |
dc.title.translated.eng.fl_str_mv |
Abdominal Lighting Simulation System Based On Mini Robots |
title |
Sistema de Simulación de la Iluminación Abdominal Basado en Mini Robots |
spellingShingle |
Sistema de Simulación de la Iluminación Abdominal Basado en Mini Robots image analysis mini lighting robots mini robots surgical robotics Unity3D análisis de imagen mini robots mini robots lumínicos robótica quirúrgica Unity3d |
title_short |
Sistema de Simulación de la Iluminación Abdominal Basado en Mini Robots |
title_full |
Sistema de Simulación de la Iluminación Abdominal Basado en Mini Robots |
title_fullStr |
Sistema de Simulación de la Iluminación Abdominal Basado en Mini Robots |
title_full_unstemmed |
Sistema de Simulación de la Iluminación Abdominal Basado en Mini Robots |
title_sort |
Sistema de Simulación de la Iluminación Abdominal Basado en Mini Robots |
dc.creator.fl_str_mv |
Chaparro Velasco, María Cristina Sabater Navarro, José María Vivas Abán, Óscar Andrés |
dc.contributor.author.spa.fl_str_mv |
Chaparro Velasco, María Cristina Sabater Navarro, José María Vivas Abán, Óscar Andrés |
dc.subject.eng.fl_str_mv |
image analysis mini lighting robots mini robots surgical robotics Unity3D |
topic |
image analysis mini lighting robots mini robots surgical robotics Unity3D análisis de imagen mini robots mini robots lumínicos robótica quirúrgica Unity3d |
dc.subject.spa.fl_str_mv |
análisis de imagen mini robots mini robots lumínicos robótica quirúrgica Unity3d |
description |
Introducción: Este documento muestra un sistema que simula la iluminación de la escena abdominal en operaciones de laparoscopia utilizando mini robots. Los mini robots estarían atados magnéticamente a la cavidad abdominal y serían manipulados por un brazo robot externo. Dos algoritmos son probados en este sistema: uno que mueve al mini robot de acuerdo al movimiento del endoscopio, y otro que lo mueve a partir de un análisis de la imagen captada por la escena. Objetivo: Contribuir a la iluminación de la escena quirúrgica por medio de mini robots atados magnéticamente a la cavidad abdominal. Metodología: Se desarrolló una herramienta software por medio de Unity3D, la cual simula el interior del abdomen en operaciones de laparoscopia, agregándosele una nueva iluminación: un mini robot tipo luz anclado magnéticamente a la pared abdominal. El mini robot tiene dos movimientos diferentes para iluminar la escena, uno depende del movimiento del endoscopio y otro del análisis de imagen realizado. Resultados: Se realizaron pruebas con una representación del entorno real comparándola con las pruebas en la herramienta construida, obteniéndose resultados similares y mostrando el potencial que tiene un mini robot para proporcionar una iluminación adicional al cirujano en caso de ser necesario. Conclusiones: El algoritmo diseñado permite que un mini robot que estaría anclado magnéticamente a la pared abdominal, se mueva a zonas de baja iluminación siguiendo dos opciones: una relación geométrica o un movimiento como resultado de un análisis de imagen. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-03-18 00:00:00 2024-04-09T20:17:55Z |
dc.date.available.none.fl_str_mv |
2021-03-18 00:00:00 2024-04-09T20:17:55Z |
dc.date.issued.none.fl_str_mv |
2021-03-18 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12280 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.17.2.2021.14 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.17.2.2021.14 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.17.2.2021.14 2382-4700 |
url |
https://hdl.handle.net/11323/12280 https://doi.org/10.17981/ingecuc.17.2.2021.14 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.eng.fl_str_mv |
D. Ruiz-Navas, V. Z., Pérez-Ariza, M. J. Betancur-Betancur, y J. Bustamante-Osorno, “Cirugía robótica mínimamente invasiva: análisis de fuerza y torque,” Rev Ing Biom, vol. 4, no. 8, pp. 84–92, 2014. Disponible en http://repository.eia.edu.co/handle/11190/492 G. Galloso & R. Frías, “Consideraciones sobre la evolución histórica de la cirugía laparoscópica: colecistectomía,” Rev Med Electrón, vol. 32, sup. 7, pp. 0–0, 2010. Disponible en http://www.revmedicaelectronica.sld.cu/index.php/rme/article/view/786 C. Brunicardi, Schwartz principios de cirugía. CDMX, MX: Mc Graw Hill, 2015. P. Ricci, R. Lema, V. Solá, J. Pardo y E. Guiloff, “Desarrollo de la cirugía laparoscópica: pasado, presente y futuro: desde Hipócrates hasta la introducción de la robótica en laparoscopía ginecológica,” Rev chil Obstet Ginecol, vol. 73, no. 1, pp. 63–75, Feb. 2008. https://dx.doi.org/10.4067/S0717-75262008000100011 S. Longmore, G. Naik y G. Gargiulo , “Laparoscopic Robotic Surgery: Current Perspective and Future Directions,” Robotics, vol. 9, no 2, pp. 42, 2020. https://dx.doi.org/10.3390/robotics9020042 M. Tiwari, J. F. Reynoso, A. C. Lehman, A. W. Tsang, S. M. Farritor y D. Oleynikov , “In vivo miniature robots for natural orifice surgery: State of the art and future perspectives,” World J. Gastrointest. Surg., vol. 2, no. 6, pp. 217, 2010. https://dx.doi.org/10.4240/wjgs.v2.i6.217 J. Raman, J. A. Cadeddu, P. Rao & A. Rane , “Single-incision laparoscopic surgery: initial urological experience and comparison with natura-orifice transluminal endoscopic surgery,” BJU Inter, vol. 101, no. 12, pp. 1493–1496, 2008. https://dx.doi.org/10.1111/j.1464-410X.2008.07586.x J. Noguera, C. Moreno, A. Cuadrado, J. M. Olea, R. Morales, J. C. Vicens, M. L. Herrero y L. Lozano, “Historia y situación actual de la cirugía endoscópica por orificios naturales en nuestro país,” Cir Esp, vol. 88, no 4, pp. 222–227, 2010. https://dx.doi.org/10.1016/j.ciresp.2010.03.046 B. Peters, P. R. Armijo, C. Krause, S. A. Choudhury & D. Oleynikov , “Review of emerging surgical robotic technology,” Surg Endosc, vol 32, no. 4, pp. 1–20, 2018. https://dx.doi.org/10.1007/s00464-018-6079-2 T. Wortman, “Design, analysis, and testing of in vivo surgical robots,” M. Sc., Dept Mech Mat Eng, UNL, NE, USA, 2011. Disponible en https://digitalcommons.unl.edu/mechengdiss/28/ M. Rentschler & D. Oleynikov, “Recent in vivo surgical robot and mechanism developments,” Surg Endosc, vol. 21, no 9, pp. 1477–1481, 2007. https://dx.doi.org/10.1007/s00464-007-9338-1 M. Cuevas-Rodríguez, B. Estébanez, E. Bauzano, I. Rivas-Blanco, I. Garcia-Morales, V. F. Muñoz, L. D. Lledo y J. M. Sabater, “Integración de una plataforma robótica de asistencia al cirujano en operaciones laparoscópicas de puerto único,” presentado en XXXV Jornadas de Automática, CEA, VLC, ES, 2014. Recuperado de http://www.ja2014.upv.es/wp-content/uploads/papers/paper_51.pdf I. Rivas-Blanco, , B. Estebanez, M. Cuevas-Rodríguez, I. García-Morales y V. F. Muñoz, “Diseño de un asistente camarógrafo para técnicas de cirugía laparoscópica por puerto único,” presentado en XXXV Jornadas de Automática, CEA, VLC, ES, 2014. Disponible en http://www.ja2014.upv.es/ Gobierno de España, Micro Abdominal Robot Cooperative System, Proyecto MARCUS, [online , 2022. Disponible en http://www.roboticamedica.uma.es/marcus/INDEX.PHP/ M. C. Chaparro & O. A. Vivas, “Tool for optimum illumination of the abdominal cavity in laparoscopic surgeries using lighting mini robots,” presentado en Colombian Conference on Robotics and Automation, PAHCE, BTA, CO, PAHCE, 2016. https://dx.doi.org/10.1109/ccra.2016.7811405 C. A Suárez, Cirugía Laparoscópica, J. Cueto y A. Weber (eds.), BAR, ES, McGraw-Hill, 1988. I. Halim, & A. Tavakkolizadeh, “NOTES: The next surgical revolution?,” Int J Surg, vol. 6, no. 4, pp. 273–276, 2008. https://dx.doi.org/10.1016/j.ijsu.2007.10.002 D. Vera & A. Vivas, “Ambiente virtual para el entrenamiento de cirugías laparoscópicas utilizando robots,” presentado en Pan American Health Care Exchanges, PAHCE, MDE, CO, 2013. Disponible en https://www.pahce.org/ S. Tognarelli, M. Salerno, G. Tortora, C. Quaglia, P. Dario, M. O. Schurr & A. Menciassi , “A miniaturized robotic platform for natural orifice transluminal endoscopic surgery: in vivo validation,” Surg Endosc, vol. 29, no. 12, pp. 3477–3484, 2015. https://dx.doi.org/10.1007/s00464-015-4097-x B.P.M Yeung & T. Gourlay, “A technical review of flexible endoscopic multitasking platforms,” Int J Surg, vol. 10, no. 7, pp. 345–354, 2012. https://dx.doi.org/10.1016/j.ijsu.2012.05.009 ViaCath diagnostic catheters, Biotronik, [online , 2022. Recuperado de www.biotronik.com/sixcms/media.php/136/ViaCath_EN.pdf R. Sotelo, J. C. Astigueta, O. Carmona, R. De Andrade y R. Sanchez-Salas, “Laparoendoscopia por acceso único: experiencia inicial,” Actas Urol Esp, vol. 33, no. 2172–181, 2009. https://dx.doi.org/10.1016/s0210-4806(09)74119-1 J. M. Sabater-Navarro, R. J. Saltaren, J. M. Ibarra-Zannatha, L. E. Rodriguez Cheu, A. Vivas, J. C. Politti, J. Serracin y E. Rubio, Robotica Medica – Notas prácticas para el Aprendizaje de la Robótica en Bioingenierıa. BAR, ES: Opensurg, 2013 S. Martel, “Journey to the center of a tumor,” IEEE Spect, vol. 49, no 10, pp. 48–53, 2012. https://dx.doi.org/10.1109/mspec.2012.6309256 R. Bogue, “Miniature and microrobots: a review of recent developments,” Ind Rob, vol. 42, no. 2, pp. 98–102, 2015. https://dx.doi.org/10.1108/ir-11-2014-0409 A. Forgione, “In vivo microrobots for natural orifice transluminal surgery. Current status and future perspectives,” Surg Oncol, vol. 18, no. 2, pp. 121–129, Jun. 2009. https://dx.doi.org/10.1016/j.suronc.2008.12.006 B. Chen, Y.-D. Liu, S. Chen, S.-R. Jiang & H.-T. Wu, “A biomimetic spermatozoa propulsion method for interventional micro robot,” J Bionic Eng, vol. 5, Sup., pp. 106–112, 2008. https://dx.doi.org/10.1016/S1672-6529(08)60080-3 K. Tokida, A. Yamaguchi, K. Takemura, S. Yokota & K. Edamura, “A bio-inspired robot using electro-conjugate fluid,” J Robot Mechatron, vol. 25, no. 1, pp. 16–24, 2013. https://dx.doi.org/10.20965/jrm.2013.p0016 J. Eid & D. Oleynikov, Cooperative and Miniature Robotics: Potential Applications in Surgery. In: S. Atallah (eds), Dig Surg, Cham, Springer, pp. 269–273, 2020. https://dx.doi.org/10.1007/978-3-030-49100-0_20 M. Simi, G. Gerboni, A. Menciassi & P. Valdastri, “Magnetic mechanism for wireless capsule biopsy,” J Med Devices, vol. 6, no. 1, pp. 17611, 2012. https://dx.doi.org/10.1115/1.40267899 S. Ueno, K. Takemura, S. Yokota & K. Edamura, “Micro inchworm robot using electro-conjugate fluid,” Sens, vol. 216, pp. 36–42, 2014. https://dx.doi.org/10.1016/j.sna.2014.04.032 J. D. Raman, D. J. Scott & J. Cadeddu, “A. Role of magnetic anchors during laparoendoscopic single site surgery and NOTES,” J Endourol, vol. 23, no. 5, pp. 781–786, 2009. https://dx.doi.org/10.1089/end.2008.0033 S. Tognarelli, M. Salerno, G. Tortora, C. Quaglia, P. Dario & A. M enciassi, “An endoluminal robotic platform for Minimally Invasive Surgery,” presentado en 4th IEEE RAS & EMBS, BioRob, Ro, It, pp. 7–12, 2012. https://dx.doi.org/10.1109/BioRob.2012.6290731 B. S. Terry, Z. C. Mills, J. A. Schoen & M. E. Rentschler, “Single-port-access surgery with a novel magnet camera system,” Trans Biomed Eng, vol. 59, no. 4, pp. 1187–1193, 2012. https://dx.doi.org/10.1109/TBME.2012.2187292 J.C Kuo, H.-W. Huang, S.-W. Tung & Y.-J. Yang, “A hydrogel-based intravascular microgripper manipulated using magnetic fields,” Sens, vol. 211, pp. 121–130, May. 2014. https://dx.doi.org/10.1016/j.sna.2014.02.028 J. Cadeddu, R. Fernández, M. M. Desai, R. Bergs, C. R. Tracy, S.-J. Tang & M. R. Desai, “Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single-site surgery: initial human experience,” Surg Endosc, vol. 23, no. 8, pp. 1894–1899, 2009. https://dx.doi.org/10.1016/s0022-5347(09)60900-9 S.L Best, S. L. Best, W. Kabbani, D. J. Scott, R. Bergs, H. Beardsley, R. Fernández, L. B. Mashaud & J. A. Cadeddu, “Magnetic anchoring and guidance system instrumentation for laparo-endoscopic single-site surgery/natural orifice transluminal endoscopic surgery: lack of histologic damage after prolonged magnetic coupling across the abdominal wall,” Urology, vol. 77, no. 1, pp. 243–247, 2011. https://dx.doi.org/10.1016/j.urology.2010.05.041 N.A Arain, L. Rondon, D. C. Hogg, J. A. Cadeddu, R. Bergs, R. Fernández & D. J. Scott , “Magnetically anchored camera and percutaneous instruments maintain triangulation and improve cosmesis compared with single-site and conventional laparoscopic cholecystectomy,” Surg Endosc, vol. 26, no. 12, pp. 3457–3466, 2012. https://dx.doi.org/10.1007/s00464-012-2354-9 R. Steinberg, B. A. Johnson, M. Meskawi, M. T. Gettman & J. A. Cadeddu, “Magnet-Assisted Robotic Prostatectomy Using the da Vinci SP Robot: An Initial Case Series,” J Endourol, vol. 33, no. 10, pp. 829–834, 2019. https://dx.doi.org/10.1089/end.2019.0263 D. Oleynikov, M. Rentschler, A. Hadzialic, J. Dumpert, S. R. Platt & S. Farritor, “Miniature robots can assist in laparoscopic cholecystectomy,” Surgical Endoscopy, vol. 19, no. 4, pp. 473–476, 2005. https://dx.doi.org/10.1007/s00464-004-8918-6 G. Yin, Gang Yin, W. K. Han, S. Faddegon, Y. K. Tan, Z.-W. Liu, E. O. Olweny, D. J. Scott & J. A. Cadeddu, “Laparoendoscopic single site (LESS) in vivo suturing using a magnetic anchoring and guidance system (MAGS) camera in a porcine model: impact on ergonomics and workload,” Urology, vol. 81, no. 1, pp. 80–84, 2013. https://dx.doi.org/10.1016/j.urology.2012.09.018 M. Karimi, S. S. Ghidary, R. Shekhar, T. D. Kane & R. Monfaredi, “Magnetically anchored pan-tilt stereoscopic robot with optical-inertial stabilization for minimally invasive surgery,” presented at Medical Imaging 2019, SPIE, SD, CA, USA, 2019. https://dx.doi.org/10.1117/12.2513019 MIRA, Virtual Incision, [online , 2022. Disponible en https://virtualincision.com/ D. Stoyanov, D. Elson & G. Z Yang, “Illumination position estimation for 3D soft-tissue reconstruction in robotic minimally invasive surgery,” presented at International Conference on Intelligent Robots and Systems, RSJ, Louis, MO, USA, pp. 2628–2633, Oct. 2009. https://dx.doi.org/10.1109/IROS.2009.5354447 R. T Shimotsu & C. G Cao, “The effect of color-contrasting shadows on a dynamic 3-D laparoscopic surgical task,” IEEE Trans Syst Man Cybern: Syst, vol. 37, no. 6, pp. 1047–1053, 2007. https://dx.doi.org/10.1109/tsmca.2007.904738 D. Pakhomov, V. Premachandran, M. Allan, M. Azizian & N. Navab, Deep residual learning for instrument segmentation in robotic surgery. In: H. Suk, M. Liu, P. Yan & C. Lian (eds), Machine Learning in Medical Imaging, Cham, Springer, pp. 566–573, 2019. https://dx.doi.org/10.1007/978-3-030-32692-0_65 S. Tchoulack, J. P Langlois & F. Cheriet, “A video stream processor for real-time detection and correction of specular reflections in endoscopic images,” presented at Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, IEEE, Montreal, QC, CA, pp. 42–59, 2008. https://dx.doi.org/10.1109/newcas.2008.4606318 J.J Guo, D.-F. Shen, G.-S. Lin, J.-C. Huang, K.-C. Liu & W.-N. Lie, “A specular reflection suppression method for endoscopic images,” presented at IEEE Second International Conference on Multimedia Big Data, BigMM, TPE, TW, pp. 125–128, 2016. https://dx.doi.org/10.1109/bigmm.2016.78 D. Stoyanov & G. Z. Yang, “Removing specular reflection components for robotic assisted laparoscopic surgery,” presented at IEEE International Conference on Image Processing, IEEE, GE, IT, pp. III–632, 2005. https://dx.doi.org/10.1109/icip.2005.1530471 A. C Lee, D. S. Elson, M. A. Neil, S. Kumar, B. W. Ling, F. Bello & G. B. Hanna , “Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery,” Surg Endosc, vol. 23, no. 3, pp. 518–526, Mar. 2009. https://dx.doi.org/10.1007/s00464-008-9854-7 T. Hu, P. K. Allen, N. J. Hogle & D. L. Fowler, “Insertable surgical imaging device with pan, tilt, zoom, and lighting,” Int J Robot Res, vol. 28, no. 10, pp. 1373–1386, May. 2009. https://dx.doi.org/10.1177/0278364908104292 D.-H. Dong, H.-Y. Zhu, Y. Luo, H.-K. Zhang, J.-X. Xiang, F. Xue, R.-Q. Wu & Y. Lv , “Miniature magnetically anchored and controlled camera system for trocar-less laparoscopy,” World J Gastroenterol, vol. 23, no. 12, pp. 2168, 2017. https://dx.doi.org/10.3748/wjg.v23.i12.2168 M. Simi, M. Silvestri, C. Cavallotti, M. Vatteroni, P. Valdastri, A. Menciassi & P. Dario, “Magnetically activated stereoscopic vision system for laparoendoscopic single-site surgery,” IEEE/ASME Trans Mechatron, vol. 18, no. 3, pp. 1140–1151, 2012. https://dx.doi.org/10.1109/tmech.2012.2198830 A. R Yazdanpanah, X. Liu, N. Li & J. Tan.A novel laparoscopic camera robot with in-vivo lens cleaning and debris prevention modules,” presented at IROS, IEEE/RSJ, VBC, CA, pp. 3669–3674, 2017. https://dx.doi.org/10.1109/iros.2017.8206212 Boston Center Perú, Cirugía laparoscópica de estómago, [online , 2022. Disponible en http://cirugiaendoscopicaperu.com/?q=node/197 Open CV, Histogram calculation, [online , 2022. Disponible en https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/histogram_calculation/histogram_calculation.html Open CV, Histograms - 1: Find, Plot, Analyze, [online , 2022. Disponible en https://docs.opencv.org/3.1.0/d1/db7/tutorial_py_histogram_begins.html Cambridge in Colour, Camera histograms: Tones & Contrast, [online , 2022. Disponible en http://www.cambridgeincolour.com/tutorials/histograms1.htm Open CV, Histograms - 1: Find, Plot, Analyze, [online], 2022. Disponible en https://docs.opencv.org/3.1.0/d1/db7/tutorial_py_histogram_begins.html Cambridge in Colour, Camera histograms: Tones & Contrast, [online], 2022. Disponible en http://www.cambridgeincolour.com/tutorials/histograms1.htm |
dc.relation.citationendpage.none.fl_str_mv |
166 |
dc.relation.citationstartpage.none.fl_str_mv |
143 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2982/3819 https://revistascientificas.cuc.edu.co/ingecuc/article/download/2982/4675 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2021 : (Julio-Diciembre) |
dc.rights.eng.fl_str_mv |
INGE CUC - 2021 |
dc.rights.uri.eng.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2021 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.eng.fl_str_mv |
application/pdf text/html |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.eng.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/2982 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/9995383f-d6ba-41ca-add7-c975e73c07e7/download |
bitstream.checksum.fl_str_mv |
8dae1d128e86cfbc7814f143bb81aa8e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760729267634176 |
spelling |
Chaparro Velasco, María CristinaSabater Navarro, José MaríaVivas Abán, Óscar Andrés2021-03-18 00:00:002024-04-09T20:17:55Z2021-03-18 00:00:002024-04-09T20:17:55Z2021-03-180122-6517https://hdl.handle.net/11323/12280https://doi.org/10.17981/ingecuc.17.2.2021.1410.17981/ingecuc.17.2.2021.142382-4700Introducción: Este documento muestra un sistema que simula la iluminación de la escena abdominal en operaciones de laparoscopia utilizando mini robots. Los mini robots estarían atados magnéticamente a la cavidad abdominal y serían manipulados por un brazo robot externo. Dos algoritmos son probados en este sistema: uno que mueve al mini robot de acuerdo al movimiento del endoscopio, y otro que lo mueve a partir de un análisis de la imagen captada por la escena. Objetivo: Contribuir a la iluminación de la escena quirúrgica por medio de mini robots atados magnéticamente a la cavidad abdominal. Metodología: Se desarrolló una herramienta software por medio de Unity3D, la cual simula el interior del abdomen en operaciones de laparoscopia, agregándosele una nueva iluminación: un mini robot tipo luz anclado magnéticamente a la pared abdominal. El mini robot tiene dos movimientos diferentes para iluminar la escena, uno depende del movimiento del endoscopio y otro del análisis de imagen realizado. Resultados: Se realizaron pruebas con una representación del entorno real comparándola con las pruebas en la herramienta construida, obteniéndose resultados similares y mostrando el potencial que tiene un mini robot para proporcionar una iluminación adicional al cirujano en caso de ser necesario. Conclusiones: El algoritmo diseñado permite que un mini robot que estaría anclado magnéticamente a la pared abdominal, se mueva a zonas de baja iluminación siguiendo dos opciones: una relación geométrica o un movimiento como resultado de un análisis de imagen.Introduction: This document shows a system that simulates the illumination of the abdominal scene in laparoscopic operations using mini robots. The mini robots would be magnetically tied to the abdominal cavity and manipulated by an external robot arm. Two algorithms are tested in this system: one that moves the mini robot according to the movement of the endoscope, and another that moves from an analysis of the image captured by the scene. Objective: To contribute to the illumination of the surgical scene by means of mini robots attached magnetically to the abdominal cavity. Methodology: A software tool was developed using Unity3D, which simulates the interior of the abdomen in laparoscopic operations, adding a new lighting: a mini light-type robot magnetically anchored to the abdominal wall. The mini robot has two different movements to illuminate the scene, one depends on the movement of the endoscope and the other on the image analysis performed. Results: Tests were performed with a representation of the real environment comparing it with the tests in the built tool, obtaining similar results and showing the potential of a mini robot to provide additional lighting to the surgeon if necessary. Conclusions: The designed algorithm allows a mini robot that is magnetically anchored in the abdominal wall to move to low-light areas following two options: a geometric relationship or movement as a result of image analysis.application/pdftext/htmlengUniversidad de la CostaINGE CUC - 2021http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/2982image analysismini lighting robotsmini robotssurgical roboticsUnity3Danálisis de imagenmini robotsmini robots lumínicosrobótica quirúrgicaUnity3dSistema de Simulación de la Iluminación Abdominal Basado en Mini RobotsAbdominal Lighting Simulation System Based On Mini RobotsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge Cuc D. Ruiz-Navas, V. Z., Pérez-Ariza, M. J. Betancur-Betancur, y J. Bustamante-Osorno, “Cirugía robótica mínimamente invasiva: análisis de fuerza y torque,” Rev Ing Biom, vol. 4, no. 8, pp. 84–92, 2014. Disponible en http://repository.eia.edu.co/handle/11190/492 G. Galloso & R. Frías, “Consideraciones sobre la evolución histórica de la cirugía laparoscópica: colecistectomía,” Rev Med Electrón, vol. 32, sup. 7, pp. 0–0, 2010. Disponible en http://www.revmedicaelectronica.sld.cu/index.php/rme/article/view/786 C. Brunicardi, Schwartz principios de cirugía. CDMX, MX: Mc Graw Hill, 2015. P. Ricci, R. Lema, V. Solá, J. Pardo y E. Guiloff, “Desarrollo de la cirugía laparoscópica: pasado, presente y futuro: desde Hipócrates hasta la introducción de la robótica en laparoscopía ginecológica,” Rev chil Obstet Ginecol, vol. 73, no. 1, pp. 63–75, Feb. 2008. https://dx.doi.org/10.4067/S0717-75262008000100011 S. Longmore, G. Naik y G. Gargiulo , “Laparoscopic Robotic Surgery: Current Perspective and Future Directions,” Robotics, vol. 9, no 2, pp. 42, 2020. https://dx.doi.org/10.3390/robotics9020042 M. Tiwari, J. F. Reynoso, A. C. Lehman, A. W. Tsang, S. M. Farritor y D. Oleynikov , “In vivo miniature robots for natural orifice surgery: State of the art and future perspectives,” World J. Gastrointest. Surg., vol. 2, no. 6, pp. 217, 2010. https://dx.doi.org/10.4240/wjgs.v2.i6.217 J. Raman, J. A. Cadeddu, P. Rao & A. Rane , “Single-incision laparoscopic surgery: initial urological experience and comparison with natura-orifice transluminal endoscopic surgery,” BJU Inter, vol. 101, no. 12, pp. 1493–1496, 2008. https://dx.doi.org/10.1111/j.1464-410X.2008.07586.x J. Noguera, C. Moreno, A. Cuadrado, J. M. Olea, R. Morales, J. C. Vicens, M. L. Herrero y L. Lozano, “Historia y situación actual de la cirugía endoscópica por orificios naturales en nuestro país,” Cir Esp, vol. 88, no 4, pp. 222–227, 2010. https://dx.doi.org/10.1016/j.ciresp.2010.03.046 B. Peters, P. R. Armijo, C. Krause, S. A. Choudhury & D. Oleynikov , “Review of emerging surgical robotic technology,” Surg Endosc, vol 32, no. 4, pp. 1–20, 2018. https://dx.doi.org/10.1007/s00464-018-6079-2 T. Wortman, “Design, analysis, and testing of in vivo surgical robots,” M. Sc., Dept Mech Mat Eng, UNL, NE, USA, 2011. Disponible en https://digitalcommons.unl.edu/mechengdiss/28/ M. Rentschler & D. Oleynikov, “Recent in vivo surgical robot and mechanism developments,” Surg Endosc, vol. 21, no 9, pp. 1477–1481, 2007. https://dx.doi.org/10.1007/s00464-007-9338-1 M. Cuevas-Rodríguez, B. Estébanez, E. Bauzano, I. Rivas-Blanco, I. Garcia-Morales, V. F. Muñoz, L. D. Lledo y J. M. Sabater, “Integración de una plataforma robótica de asistencia al cirujano en operaciones laparoscópicas de puerto único,” presentado en XXXV Jornadas de Automática, CEA, VLC, ES, 2014. Recuperado de http://www.ja2014.upv.es/wp-content/uploads/papers/paper_51.pdf I. Rivas-Blanco, , B. Estebanez, M. Cuevas-Rodríguez, I. García-Morales y V. F. Muñoz, “Diseño de un asistente camarógrafo para técnicas de cirugía laparoscópica por puerto único,” presentado en XXXV Jornadas de Automática, CEA, VLC, ES, 2014. Disponible en http://www.ja2014.upv.es/ Gobierno de España, Micro Abdominal Robot Cooperative System, Proyecto MARCUS, [online , 2022. Disponible en http://www.roboticamedica.uma.es/marcus/INDEX.PHP/ M. C. Chaparro & O. A. Vivas, “Tool for optimum illumination of the abdominal cavity in laparoscopic surgeries using lighting mini robots,” presentado en Colombian Conference on Robotics and Automation, PAHCE, BTA, CO, PAHCE, 2016. https://dx.doi.org/10.1109/ccra.2016.7811405 C. A Suárez, Cirugía Laparoscópica, J. Cueto y A. Weber (eds.), BAR, ES, McGraw-Hill, 1988. I. Halim, & A. Tavakkolizadeh, “NOTES: The next surgical revolution?,” Int J Surg, vol. 6, no. 4, pp. 273–276, 2008. https://dx.doi.org/10.1016/j.ijsu.2007.10.002 D. Vera & A. Vivas, “Ambiente virtual para el entrenamiento de cirugías laparoscópicas utilizando robots,” presentado en Pan American Health Care Exchanges, PAHCE, MDE, CO, 2013. Disponible en https://www.pahce.org/ S. Tognarelli, M. Salerno, G. Tortora, C. Quaglia, P. Dario, M. O. Schurr & A. Menciassi , “A miniaturized robotic platform for natural orifice transluminal endoscopic surgery: in vivo validation,” Surg Endosc, vol. 29, no. 12, pp. 3477–3484, 2015. https://dx.doi.org/10.1007/s00464-015-4097-x B.P.M Yeung & T. Gourlay, “A technical review of flexible endoscopic multitasking platforms,” Int J Surg, vol. 10, no. 7, pp. 345–354, 2012. https://dx.doi.org/10.1016/j.ijsu.2012.05.009 ViaCath diagnostic catheters, Biotronik, [online , 2022. Recuperado de www.biotronik.com/sixcms/media.php/136/ViaCath_EN.pdf R. Sotelo, J. C. Astigueta, O. Carmona, R. De Andrade y R. Sanchez-Salas, “Laparoendoscopia por acceso único: experiencia inicial,” Actas Urol Esp, vol. 33, no. 2172–181, 2009. https://dx.doi.org/10.1016/s0210-4806(09)74119-1 J. M. Sabater-Navarro, R. J. Saltaren, J. M. Ibarra-Zannatha, L. E. Rodriguez Cheu, A. Vivas, J. C. Politti, J. Serracin y E. Rubio, Robotica Medica – Notas prácticas para el Aprendizaje de la Robótica en Bioingenierıa. BAR, ES: Opensurg, 2013 S. Martel, “Journey to the center of a tumor,” IEEE Spect, vol. 49, no 10, pp. 48–53, 2012. https://dx.doi.org/10.1109/mspec.2012.6309256 R. Bogue, “Miniature and microrobots: a review of recent developments,” Ind Rob, vol. 42, no. 2, pp. 98–102, 2015. https://dx.doi.org/10.1108/ir-11-2014-0409 A. Forgione, “In vivo microrobots for natural orifice transluminal surgery. Current status and future perspectives,” Surg Oncol, vol. 18, no. 2, pp. 121–129, Jun. 2009. https://dx.doi.org/10.1016/j.suronc.2008.12.006 B. Chen, Y.-D. Liu, S. Chen, S.-R. Jiang & H.-T. Wu, “A biomimetic spermatozoa propulsion method for interventional micro robot,” J Bionic Eng, vol. 5, Sup., pp. 106–112, 2008. https://dx.doi.org/10.1016/S1672-6529(08)60080-3 K. Tokida, A. Yamaguchi, K. Takemura, S. Yokota & K. Edamura, “A bio-inspired robot using electro-conjugate fluid,” J Robot Mechatron, vol. 25, no. 1, pp. 16–24, 2013. https://dx.doi.org/10.20965/jrm.2013.p0016 J. Eid & D. Oleynikov, Cooperative and Miniature Robotics: Potential Applications in Surgery. In: S. Atallah (eds), Dig Surg, Cham, Springer, pp. 269–273, 2020. https://dx.doi.org/10.1007/978-3-030-49100-0_20 M. Simi, G. Gerboni, A. Menciassi & P. Valdastri, “Magnetic mechanism for wireless capsule biopsy,” J Med Devices, vol. 6, no. 1, pp. 17611, 2012. https://dx.doi.org/10.1115/1.40267899 S. Ueno, K. Takemura, S. Yokota & K. Edamura, “Micro inchworm robot using electro-conjugate fluid,” Sens, vol. 216, pp. 36–42, 2014. https://dx.doi.org/10.1016/j.sna.2014.04.032 J. D. Raman, D. J. Scott & J. Cadeddu, “A. Role of magnetic anchors during laparoendoscopic single site surgery and NOTES,” J Endourol, vol. 23, no. 5, pp. 781–786, 2009. https://dx.doi.org/10.1089/end.2008.0033 S. Tognarelli, M. Salerno, G. Tortora, C. Quaglia, P. Dario & A. M enciassi, “An endoluminal robotic platform for Minimally Invasive Surgery,” presentado en 4th IEEE RAS & EMBS, BioRob, Ro, It, pp. 7–12, 2012. https://dx.doi.org/10.1109/BioRob.2012.6290731 B. S. Terry, Z. C. Mills, J. A. Schoen & M. E. Rentschler, “Single-port-access surgery with a novel magnet camera system,” Trans Biomed Eng, vol. 59, no. 4, pp. 1187–1193, 2012. https://dx.doi.org/10.1109/TBME.2012.2187292 J.C Kuo, H.-W. Huang, S.-W. Tung & Y.-J. Yang, “A hydrogel-based intravascular microgripper manipulated using magnetic fields,” Sens, vol. 211, pp. 121–130, May. 2014. https://dx.doi.org/10.1016/j.sna.2014.02.028 J. Cadeddu, R. Fernández, M. M. Desai, R. Bergs, C. R. Tracy, S.-J. Tang & M. R. Desai, “Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single-site surgery: initial human experience,” Surg Endosc, vol. 23, no. 8, pp. 1894–1899, 2009. https://dx.doi.org/10.1016/s0022-5347(09)60900-9 S.L Best, S. L. Best, W. Kabbani, D. J. Scott, R. Bergs, H. Beardsley, R. Fernández, L. B. Mashaud & J. A. Cadeddu, “Magnetic anchoring and guidance system instrumentation for laparo-endoscopic single-site surgery/natural orifice transluminal endoscopic surgery: lack of histologic damage after prolonged magnetic coupling across the abdominal wall,” Urology, vol. 77, no. 1, pp. 243–247, 2011. https://dx.doi.org/10.1016/j.urology.2010.05.041 N.A Arain, L. Rondon, D. C. Hogg, J. A. Cadeddu, R. Bergs, R. Fernández & D. J. Scott , “Magnetically anchored camera and percutaneous instruments maintain triangulation and improve cosmesis compared with single-site and conventional laparoscopic cholecystectomy,” Surg Endosc, vol. 26, no. 12, pp. 3457–3466, 2012. https://dx.doi.org/10.1007/s00464-012-2354-9 R. Steinberg, B. A. Johnson, M. Meskawi, M. T. Gettman & J. A. Cadeddu, “Magnet-Assisted Robotic Prostatectomy Using the da Vinci SP Robot: An Initial Case Series,” J Endourol, vol. 33, no. 10, pp. 829–834, 2019. https://dx.doi.org/10.1089/end.2019.0263 D. Oleynikov, M. Rentschler, A. Hadzialic, J. Dumpert, S. R. Platt & S. Farritor, “Miniature robots can assist in laparoscopic cholecystectomy,” Surgical Endoscopy, vol. 19, no. 4, pp. 473–476, 2005. https://dx.doi.org/10.1007/s00464-004-8918-6 G. Yin, Gang Yin, W. K. Han, S. Faddegon, Y. K. Tan, Z.-W. Liu, E. O. Olweny, D. J. Scott & J. A. Cadeddu, “Laparoendoscopic single site (LESS) in vivo suturing using a magnetic anchoring and guidance system (MAGS) camera in a porcine model: impact on ergonomics and workload,” Urology, vol. 81, no. 1, pp. 80–84, 2013. https://dx.doi.org/10.1016/j.urology.2012.09.018 M. Karimi, S. S. Ghidary, R. Shekhar, T. D. Kane & R. Monfaredi, “Magnetically anchored pan-tilt stereoscopic robot with optical-inertial stabilization for minimally invasive surgery,” presented at Medical Imaging 2019, SPIE, SD, CA, USA, 2019. https://dx.doi.org/10.1117/12.2513019 MIRA, Virtual Incision, [online , 2022. Disponible en https://virtualincision.com/ D. Stoyanov, D. Elson & G. Z Yang, “Illumination position estimation for 3D soft-tissue reconstruction in robotic minimally invasive surgery,” presented at International Conference on Intelligent Robots and Systems, RSJ, Louis, MO, USA, pp. 2628–2633, Oct. 2009. https://dx.doi.org/10.1109/IROS.2009.5354447 R. T Shimotsu & C. G Cao, “The effect of color-contrasting shadows on a dynamic 3-D laparoscopic surgical task,” IEEE Trans Syst Man Cybern: Syst, vol. 37, no. 6, pp. 1047–1053, 2007. https://dx.doi.org/10.1109/tsmca.2007.904738 D. Pakhomov, V. Premachandran, M. Allan, M. Azizian & N. Navab, Deep residual learning for instrument segmentation in robotic surgery. In: H. Suk, M. Liu, P. Yan & C. Lian (eds), Machine Learning in Medical Imaging, Cham, Springer, pp. 566–573, 2019. https://dx.doi.org/10.1007/978-3-030-32692-0_65 S. Tchoulack, J. P Langlois & F. Cheriet, “A video stream processor for real-time detection and correction of specular reflections in endoscopic images,” presented at Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, IEEE, Montreal, QC, CA, pp. 42–59, 2008. https://dx.doi.org/10.1109/newcas.2008.4606318 J.J Guo, D.-F. Shen, G.-S. Lin, J.-C. Huang, K.-C. Liu & W.-N. Lie, “A specular reflection suppression method for endoscopic images,” presented at IEEE Second International Conference on Multimedia Big Data, BigMM, TPE, TW, pp. 125–128, 2016. https://dx.doi.org/10.1109/bigmm.2016.78 D. Stoyanov & G. Z. Yang, “Removing specular reflection components for robotic assisted laparoscopic surgery,” presented at IEEE International Conference on Image Processing, IEEE, GE, IT, pp. III–632, 2005. https://dx.doi.org/10.1109/icip.2005.1530471 A. C Lee, D. S. Elson, M. A. Neil, S. Kumar, B. W. Ling, F. Bello & G. B. Hanna , “Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery,” Surg Endosc, vol. 23, no. 3, pp. 518–526, Mar. 2009. https://dx.doi.org/10.1007/s00464-008-9854-7 T. Hu, P. K. Allen, N. J. Hogle & D. L. Fowler, “Insertable surgical imaging device with pan, tilt, zoom, and lighting,” Int J Robot Res, vol. 28, no. 10, pp. 1373–1386, May. 2009. https://dx.doi.org/10.1177/0278364908104292 D.-H. Dong, H.-Y. Zhu, Y. Luo, H.-K. Zhang, J.-X. Xiang, F. Xue, R.-Q. Wu & Y. Lv , “Miniature magnetically anchored and controlled camera system for trocar-less laparoscopy,” World J Gastroenterol, vol. 23, no. 12, pp. 2168, 2017. https://dx.doi.org/10.3748/wjg.v23.i12.2168 M. Simi, M. Silvestri, C. Cavallotti, M. Vatteroni, P. Valdastri, A. Menciassi & P. Dario, “Magnetically activated stereoscopic vision system for laparoendoscopic single-site surgery,” IEEE/ASME Trans Mechatron, vol. 18, no. 3, pp. 1140–1151, 2012. https://dx.doi.org/10.1109/tmech.2012.2198830 A. R Yazdanpanah, X. Liu, N. Li & J. Tan.A novel laparoscopic camera robot with in-vivo lens cleaning and debris prevention modules,” presented at IROS, IEEE/RSJ, VBC, CA, pp. 3669–3674, 2017. https://dx.doi.org/10.1109/iros.2017.8206212 Boston Center Perú, Cirugía laparoscópica de estómago, [online , 2022. Disponible en http://cirugiaendoscopicaperu.com/?q=node/197 Open CV, Histogram calculation, [online , 2022. Disponible en https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/histogram_calculation/histogram_calculation.htmlOpen CV, Histograms - 1: Find, Plot, Analyze, [online , 2022. Disponible en https://docs.opencv.org/3.1.0/d1/db7/tutorial_py_histogram_begins.htmlCambridge in Colour, Camera histograms: Tones & Contrast, [online , 2022. Disponible en http://www.cambridgeincolour.com/tutorials/histograms1.htmOpen CV, Histograms - 1: Find, Plot, Analyze, [online], 2022. Disponible en https://docs.opencv.org/3.1.0/d1/db7/tutorial_py_histogram_begins.htmlCambridge in Colour, Camera histograms: Tones & Contrast, [online], 2022. Disponible en http://www.cambridgeincolour.com/tutorials/histograms1.htm166143217https://revistascientificas.cuc.edu.co/ingecuc/article/download/2982/3819https://revistascientificas.cuc.edu.co/ingecuc/article/download/2982/4675Núm. 2 , Año 2021 : (Julio-Diciembre)PublicationOREORE.xmltext/xml2639https://repositorio.cuc.edu.co/bitstreams/9995383f-d6ba-41ca-add7-c975e73c07e7/download8dae1d128e86cfbc7814f143bb81aa8eMD5111323/12280oai:repositorio.cuc.edu.co:11323/122802024-09-17 10:51:05.24http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2021metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |