N-Ribosyltransferase From Archaeoglobus veneficus: A Novel Halotolerant and Thermostable Biocatalyst for the Synthesis of Purine Ribonucleoside Analogs

Nucleoside-2′-deoxyribosyl-transferases (NDTs) catalyze a transglycosylation reaction consisting of the exchange of the 2′-deoxyribose moiety between a purine and/or pyrimidine nucleoside and a purine and/or pyrimidine base. Because NDTs are highly specific for 2′-deoxyribonucleosides they generally...

Full description

Autores:
Acosta, Javier
Del Arco, Jon
Pisabarro, Victor
Gago, Federico
Fernández-Lucas, Jesús
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6474
Acceso en línea:
https://hdl.handle.net/11323/6474
https://doi.org/10.3389/fbioe.2020.00593
https://repositorio.cuc.edu.co/
Palabra clave:
Nucleosides
Extremophiles
Nucleoside 2′-deoxyribosyltransferase
Transglycosylation
Homology modeling
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_b22ac32196c1b89c5c61d39bc1c1a34e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6474
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv N-Ribosyltransferase From Archaeoglobus veneficus: A Novel Halotolerant and Thermostable Biocatalyst for the Synthesis of Purine Ribonucleoside Analogs
title N-Ribosyltransferase From Archaeoglobus veneficus: A Novel Halotolerant and Thermostable Biocatalyst for the Synthesis of Purine Ribonucleoside Analogs
spellingShingle N-Ribosyltransferase From Archaeoglobus veneficus: A Novel Halotolerant and Thermostable Biocatalyst for the Synthesis of Purine Ribonucleoside Analogs
Nucleosides
Extremophiles
Nucleoside 2′-deoxyribosyltransferase
Transglycosylation
Homology modeling
title_short N-Ribosyltransferase From Archaeoglobus veneficus: A Novel Halotolerant and Thermostable Biocatalyst for the Synthesis of Purine Ribonucleoside Analogs
title_full N-Ribosyltransferase From Archaeoglobus veneficus: A Novel Halotolerant and Thermostable Biocatalyst for the Synthesis of Purine Ribonucleoside Analogs
title_fullStr N-Ribosyltransferase From Archaeoglobus veneficus: A Novel Halotolerant and Thermostable Biocatalyst for the Synthesis of Purine Ribonucleoside Analogs
title_full_unstemmed N-Ribosyltransferase From Archaeoglobus veneficus: A Novel Halotolerant and Thermostable Biocatalyst for the Synthesis of Purine Ribonucleoside Analogs
title_sort N-Ribosyltransferase From Archaeoglobus veneficus: A Novel Halotolerant and Thermostable Biocatalyst for the Synthesis of Purine Ribonucleoside Analogs
dc.creator.fl_str_mv Acosta, Javier
Del Arco, Jon
Pisabarro, Victor
Gago, Federico
Fernández-Lucas, Jesús
dc.contributor.author.spa.fl_str_mv Acosta, Javier
Del Arco, Jon
Pisabarro, Victor
Gago, Federico
Fernández-Lucas, Jesús
dc.subject.spa.fl_str_mv Nucleosides
Extremophiles
Nucleoside 2′-deoxyribosyltransferase
Transglycosylation
Homology modeling
topic Nucleosides
Extremophiles
Nucleoside 2′-deoxyribosyltransferase
Transglycosylation
Homology modeling
description Nucleoside-2′-deoxyribosyl-transferases (NDTs) catalyze a transglycosylation reaction consisting of the exchange of the 2′-deoxyribose moiety between a purine and/or pyrimidine nucleoside and a purine and/or pyrimidine base. Because NDTs are highly specific for 2′-deoxyribonucleosides they generally display poor activity on modified C2′ and C3′ nucleosides and this limitation hampers their applicability as biocatalysts for the synthesis of modified nucleosides. We now report the production and purification of a novel NDT from Archaeoglobus veneficus that is endowed with native ribosyltransferase activity and hence it is more properly classified as an N-ribosyltransferase (AvNRT). Biophysical and biochemical characterization revealed that AvNRT is a homotetramer that displays maximum activity at 80°C and pH 6 and shows remarkably high stability at high temperatures (60–80°C). In addition, the activity of AvNRT was found to increase up to 2-fold in 4 M NaCl aqueous solution and to be retained in the presence of several water-miscible organic solvents. For completeness, and as a proof of concept for possible industrial applications, this thermophilic and halotolerant biocatalyst was successfully employed in the synthesis of different purine ribonucleoside analogs.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-07T19:15:03Z
dc.date.available.none.fl_str_mv 2020-07-07T19:15:03Z
dc.date.issued.none.fl_str_mv 2020-06-20
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2296-4185
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6474
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3389/fbioe.2020.00593
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2296-4185
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6474
https://doi.org/10.3389/fbioe.2020.00593
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Thomson, J., and Lamont, I. (2019). Nucleoside analogues as antibacterial agents. Front. Microbiol. 10:952. doi: 10.3389/fmicb.2019.00952
Trelles, J., Rivero, C. N., Britos, C. J., and Lapponi, M. (2019). “Enzymatic synthesis of nucleic acid derivatives by immobilized cells,” in Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives, eds J. Fernández-Lucas and M. J. Camarasa (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KgaA), 79–106.
Vichier-Guerre, S., Dugué, L., Bonhomme, F., and Pochet, S. (2017). An expedient synthesis of flexible nucleosides via a regiocontrolled enzymatic glycosylation of functionalized imidazoles. Org. Biomol. Chem. 15, 8193–8203. doi: 10.1039/c7ob01850a
Ye, W., Paul, D., Gao, L., Seckute, J., Sangaiah, R., Jayaraj, K., et al. (2014). Ethenoguanines undergo glycosylation by nucleoside 2′-deoxyribosyltransferases at non-natural sites. PLoS ONE 9:e115082. doi: 10.1371/journal.pone.0115082
Zhao, G., Wu, G., Zhang, Y., Liu, G., Han, T., Deng, Z., et al. (2014). Structure of the N-glycosidase MilB in complex with hydroxymethyl CMP reveals its Arg23 specifically recognizes the substrate and controls its entry. Nucleic Acids Res. 42, 8115–8124. doi: 10.1093/nar/gku486
Zhou, X., Yan, W., Zhang, C., Yang, Z., Neubauer, P., Mikhailopulo, I. A., et al. (2019). Biocatalytic synthesis of seleno-, thio-and chloro-nucleobase modified nucleosides by thermostable nucleoside phosphorylases. Catal. Commun. 121, 32–37. doi: 10.1016/j.catcom.2018.12.004
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Frontiers in Bioengineering and Biotechnology
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/218a86e1-66c4-4e2d-bf7e-ec5ec5ad4821/download
https://repositorio.cuc.edu.co/bitstreams/b4f676a2-8397-4704-9b54-beecf80a0a60/download
https://repositorio.cuc.edu.co/bitstreams/f482e804-0635-4ebd-9209-b1f0b699452b/download
https://repositorio.cuc.edu.co/bitstreams/01653d4f-f364-4e4c-b7cb-e8b9a72e9afe/download
https://repositorio.cuc.edu.co/bitstreams/27d4739a-5bb6-40aa-9553-d4456fe8e0ff/download
bitstream.checksum.fl_str_mv 5e0ef9cad089f76597ba503c3839f2cb
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
a5af0c62b0b0d5f27b458c241280543c
1b35879bd0b535de2bc7bcdf3f12bf5d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760765438263296
spelling Acosta, JavierDel Arco, JonPisabarro, VictorGago, FedericoFernández-Lucas, Jesús2020-07-07T19:15:03Z2020-07-07T19:15:03Z2020-06-202296-4185https://hdl.handle.net/11323/6474https://doi.org/10.3389/fbioe.2020.00593Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Nucleoside-2′-deoxyribosyl-transferases (NDTs) catalyze a transglycosylation reaction consisting of the exchange of the 2′-deoxyribose moiety between a purine and/or pyrimidine nucleoside and a purine and/or pyrimidine base. Because NDTs are highly specific for 2′-deoxyribonucleosides they generally display poor activity on modified C2′ and C3′ nucleosides and this limitation hampers their applicability as biocatalysts for the synthesis of modified nucleosides. We now report the production and purification of a novel NDT from Archaeoglobus veneficus that is endowed with native ribosyltransferase activity and hence it is more properly classified as an N-ribosyltransferase (AvNRT). Biophysical and biochemical characterization revealed that AvNRT is a homotetramer that displays maximum activity at 80°C and pH 6 and shows remarkably high stability at high temperatures (60–80°C). In addition, the activity of AvNRT was found to increase up to 2-fold in 4 M NaCl aqueous solution and to be retained in the presence of several water-miscible organic solvents. For completeness, and as a proof of concept for possible industrial applications, this thermophilic and halotolerant biocatalyst was successfully employed in the synthesis of different purine ribonucleoside analogs.Acosta, JavierDel Arco, JonPisabarro, VictorGago, FedericoFernández-Lucas, JesúsengFrontiers in Bioengineering and BiotechnologyCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2NucleosidesExtremophilesNucleoside 2′-deoxyribosyltransferaseTransglycosylationHomology modelingN-Ribosyltransferase From Archaeoglobus veneficus: A Novel Halotolerant and Thermostable Biocatalyst for the Synthesis of Purine Ribonucleoside AnalogsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionThomson, J., and Lamont, I. (2019). Nucleoside analogues as antibacterial agents. Front. Microbiol. 10:952. doi: 10.3389/fmicb.2019.00952Trelles, J., Rivero, C. N., Britos, C. J., and Lapponi, M. (2019). “Enzymatic synthesis of nucleic acid derivatives by immobilized cells,” in Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives, eds J. Fernández-Lucas and M. J. Camarasa (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KgaA), 79–106.Vichier-Guerre, S., Dugué, L., Bonhomme, F., and Pochet, S. (2017). An expedient synthesis of flexible nucleosides via a regiocontrolled enzymatic glycosylation of functionalized imidazoles. Org. Biomol. Chem. 15, 8193–8203. doi: 10.1039/c7ob01850aYe, W., Paul, D., Gao, L., Seckute, J., Sangaiah, R., Jayaraj, K., et al. (2014). Ethenoguanines undergo glycosylation by nucleoside 2′-deoxyribosyltransferases at non-natural sites. PLoS ONE 9:e115082. doi: 10.1371/journal.pone.0115082Zhao, G., Wu, G., Zhang, Y., Liu, G., Han, T., Deng, Z., et al. (2014). Structure of the N-glycosidase MilB in complex with hydroxymethyl CMP reveals its Arg23 specifically recognizes the substrate and controls its entry. Nucleic Acids Res. 42, 8115–8124. doi: 10.1093/nar/gku486Zhou, X., Yan, W., Zhang, C., Yang, Z., Neubauer, P., Mikhailopulo, I. A., et al. (2019). Biocatalytic synthesis of seleno-, thio-and chloro-nucleobase modified nucleosides by thermostable nucleoside phosphorylases. Catal. Commun. 121, 32–37. doi: 10.1016/j.catcom.2018.12.004PublicationORIGINALN-Ribosyltransferase From Archaeoglobus veneficus.pdfN-Ribosyltransferase From Archaeoglobus veneficus.pdfapplication/pdf3101180https://repositorio.cuc.edu.co/bitstreams/218a86e1-66c4-4e2d-bf7e-ec5ec5ad4821/download5e0ef9cad089f76597ba503c3839f2cbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/b4f676a2-8397-4704-9b54-beecf80a0a60/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f482e804-0635-4ebd-9209-b1f0b699452b/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILN-Ribosyltransferase From Archaeoglobus veneficus.pdf.jpgN-Ribosyltransferase From Archaeoglobus veneficus.pdf.jpgimage/jpeg63547https://repositorio.cuc.edu.co/bitstreams/01653d4f-f364-4e4c-b7cb-e8b9a72e9afe/downloada5af0c62b0b0d5f27b458c241280543cMD54TEXTN-Ribosyltransferase From Archaeoglobus veneficus.pdf.txtN-Ribosyltransferase From Archaeoglobus veneficus.pdf.txttext/plain59882https://repositorio.cuc.edu.co/bitstreams/27d4739a-5bb6-40aa-9553-d4456fe8e0ff/download1b35879bd0b535de2bc7bcdf3f12bf5dMD5511323/6474oai:repositorio.cuc.edu.co:11323/64742024-09-17 11:03:00.825http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==