An AI-based multiphase framework for improving the mechanical ventilation availability in emergency departments during respiratory disease seasons: a case study
Background Shortages of mechanical ventilation have become a constant problem in Emergency Departments (EDs), thereby affecting the timely deployment of medical interventions that counteract the severe health complications experienced during respiratory disease seasons. It is then necessary to count...
- Autores:
-
Ortiz-Barrios, Miguel
Petrillo,Antonella
Arias-Fonseca, Sebastián
McClean, Sally
de Felice, Fabio
Nugent, Chris
Uribe-López, Sheyla-Ariany
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13392
- Acceso en línea:
- https://hdl.handle.net/11323/13392
https://repositorio.cuc.edu.co/
- Palabra clave:
- Artificial Intelligence (AI)
Random Forest (RF)
Discrete-Event-Simulation (DES)
Emergency Department (ED)
Mechanical ventilation
Healthcare
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)