Sales segmentation for a mobile phone service through logistic regression algorithm
The research aims to describe the CRISP-DM method to identify optimal customer groups that are likely to migrate from a prepaid to postpaid plan in order to formulate an improvement plan in call management by sorting the database. The logistic regression model was applied to analyze the characterist...
- Autores:
-
Viloria, Amelec
Wang, Guojun
Gaitan, Mercedes
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7758
- Acceso en línea:
- https://hdl.handle.net/11323/7758
https://doi.org/10.1007/978-981-32-9889-7_3
https://repositorio.cuc.edu.co/
- Palabra clave:
- Call center
CRISP-DM
Logistic regression model.
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_a2a81bf995efe8e5364e93df03412286 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7758 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sales segmentation for a mobile phone service through logistic regression algorithm |
title |
Sales segmentation for a mobile phone service through logistic regression algorithm |
spellingShingle |
Sales segmentation for a mobile phone service through logistic regression algorithm Call center CRISP-DM Logistic regression model. |
title_short |
Sales segmentation for a mobile phone service through logistic regression algorithm |
title_full |
Sales segmentation for a mobile phone service through logistic regression algorithm |
title_fullStr |
Sales segmentation for a mobile phone service through logistic regression algorithm |
title_full_unstemmed |
Sales segmentation for a mobile phone service through logistic regression algorithm |
title_sort |
Sales segmentation for a mobile phone service through logistic regression algorithm |
dc.creator.fl_str_mv |
Viloria, Amelec Wang, Guojun Gaitan, Mercedes |
dc.contributor.author.spa.fl_str_mv |
Viloria, Amelec Wang, Guojun Gaitan, Mercedes |
dc.subject.spa.fl_str_mv |
Call center CRISP-DM Logistic regression model. |
topic |
Call center CRISP-DM Logistic regression model. |
description |
The research aims to describe the CRISP-DM method to identify optimal customer groups that are likely to migrate from a prepaid to postpaid plan in order to formulate an improvement plan in call management by sorting the database. The logistic regression model was applied to analyze the characteristics generated by the purchase of different services. In this sense, groups differentiated by their probability of sales success (migrating from a prepaid to postpaid plan) were found, as segments that reflect needs and characteristics that allow to design marketing actions focused on the objective of increasing the effectiveness, contactability, and sales. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-01-22T23:49:38Z |
dc.date.available.none.fl_str_mv |
2021-01-22T23:49:38Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7758 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-981-32-9889-7_3 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7758 https://doi.org/10.1007/978-981-32-9889-7_3 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Pineda Lezama, O., Gómez Dorta, R.: Techniques of multivariate statistical analysis: an application for the Honduran banking sector. Innov.: J. Sci. Technol. 5(2), 61–75 (2017) 2. Viloria, A., Lis-Gutierrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (Big Data). In: Tan, Y., Shi, Y., Tang, Q. (Eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018) 3. Lee, A., Taylor, P., Kalpathy-Cramer, J.: A Tufail Machine learning has arrived! Ophthalmology 124, 1726–1728 (2017) 4. Yao, L.: The present situation and development tendency of higher education quality evaluation in Western Countries, p. 2006. Educ. Beef, Priv (2006) 5. Gregorutti, B., Michel, B., Saint-Pierre, P.: Grouped variable importance with random forests and application to multiple functional data analysis. Comput. Stat. Data Anal. 90, 15–35 (2015) 6. Guo, Y., Hastie, T., Tibshirani, R.: Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8(1), 86–100 (2006) 7. Wickramarachchi, D., Robertson, B., Reale, M., Price, C., Brown, J.: HHCART: an oblique decision tree. Comput. Stat. Data Anal. 96, 12–23 (2016) 8. Hong, S., Yang, D., Park, B., et al.: An efficient intra-mode decision method for HEVC. SIViP 10(6), 1–9 (2016) 9. Kavzoglu, T., Sahin, E.K., Colkesen, I.: An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat. Hazards 76, 471–496 (2015) 10. Lei, J., Sun, Z., Gu, Z., Zhu, T., Ling, N., Wu, F.: Simplified search algorithm for explicit wedgelet signalization mode in 3D-HEVC. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, pp. 805–810 (2017) 11. Zhao, J., Zhao, X., Zhang, W., et al.: An efficient depth modeling mode decision algorithm for 3D-HEVC depth map coding. Optik Int. J. Light Electron Opt. 127(24), 12048–12055 (2016) 12. Aghdam, I.N., Varzandeh, M.H.M., Pradhan, B.: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environ. Earth Sci. 75, 553 (2016) 13. Liu, P., He, G., Xue, S., Li, Y.: A fast mode selection for depth modelling modes of intra depth coding in 3D-HEVC. In: 2016 Visual Communications and Image Processing (VCIP), Chengdu, pp. 1–4 (2016) 14. Guo, R., He, G., Li, Y., Wang, K.: Fast algorithm for prediction unit and mode decisions of intra depth coding in 3D-HEVC. In: 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, pp. 1121–1125 (2016) 15. Bonerge Pineda Lezama, O., Varela Izquierdo, N., Pérez Fernández, D., Gómez Dorta, R.L., Viloria, A., Romero Marín, L.: Models of multivariate regression for labor accidents in different production sectors: comparative study. In: Tan, Y., Shi, Y., Tang, Q. (Eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018) 16. Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (Eds.) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science, vol. 10942. Springer, Cham (2018) 17. Yao, Y., Zhao, X., Du, H., Zhang, Y., Zhang, G., Rong, J.: Classification of fatigued and drunk driving based on decision tree methods: a simulator study. Int. J. Environ. Res. Public Health 2019, 16 (1935) 18. Li, Y.Z., Zhang, N., Liu, F., et al.: Application of apriori algorithm based on information theory optimization in traffic accident analysis. Inf. Syst. Eng. 10, 80–84 (2016) 19. Lombardi, D.A., Horrey, W.J., Courtney, T.K.: Age-related differences in fatal intersection crashes in the United States. Accid. Anal. Prev. 99(Pt A), 20 (2016) 20. Liu, Z.Q., Wang, L., Zhang, A.H.: Study on the mechanism of traffic accidents in wusongtian highway based on bayesian model. J. Chongqing Univ. Technol. 1, 43–49 (2018) 21. Markov, Z., Russell, I.: An introduction to the WEKA data mining system[C]. In: Sigcse Conference on Innovation & Technology in Computer Science Education, pp. 367–368. ACM (2006) 22. Gao, Y., Dong, X., Tian, F.: Analysis of current situation of highway traffic safety and management countermeasures. China Saf. Prod. Sci. Technol. 11(10), 110–115 (2015) 23. Amelec, V.: Validation of strategies to reduce exhausted shelf products in a pharmaceutical chain. Adv. Sci. Lett. 21(5), 1403–1405 (2015) 24. Amelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015) |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Smart Innovation, Systems and Technologies |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-981-32-9889-7_3 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/db01c764-48f3-4ea3-a13a-4a091156139d/download https://repositorio.cuc.edu.co/bitstreams/78c04a28-d4ed-4830-8861-acd1a55895fd/download https://repositorio.cuc.edu.co/bitstreams/da1c7efe-94f9-4076-8306-2b34b6ef6068/download https://repositorio.cuc.edu.co/bitstreams/def29a50-17e6-4993-a47c-091e42ae3219/download https://repositorio.cuc.edu.co/bitstreams/cf0b4a47-dd08-4a21-9a04-2418be8841b1/download |
bitstream.checksum.fl_str_mv |
e30e9215131d99561d40d6b0abbe9bad 59dd2a68c6aa098bbabc67e1957711ae 4460e5956bc1d1639be9ae6146a50347 bee1d96758419a66a33b6e1dc30dacb2 9b73ca0882cf3e5a34dec6b0525d7e7c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166830680702976 |
spelling |
Viloria, AmelecWang, GuojunGaitan, Mercedes2021-01-22T23:49:38Z2021-01-22T23:49:38Z2020https://hdl.handle.net/11323/7758https://doi.org/10.1007/978-981-32-9889-7_3Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The research aims to describe the CRISP-DM method to identify optimal customer groups that are likely to migrate from a prepaid to postpaid plan in order to formulate an improvement plan in call management by sorting the database. The logistic regression model was applied to analyze the characteristics generated by the purchase of different services. In this sense, groups differentiated by their probability of sales success (migrating from a prepaid to postpaid plan) were found, as segments that reflect needs and characteristics that allow to design marketing actions focused on the objective of increasing the effectiveness, contactability, and sales.Viloria, AmelecWang, Guojun-will be generated-orcid-0000-0001-9875-4182-600Gaitan, Mercedesapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Smart Innovation, Systems and Technologieshttps://link.springer.com/chapter/10.1007/978-981-32-9889-7_3Call centerCRISP-DMLogistic regression model.Sales segmentation for a mobile phone service through logistic regression algorithmArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Pineda Lezama, O., Gómez Dorta, R.: Techniques of multivariate statistical analysis: an application for the Honduran banking sector. Innov.: J. Sci. Technol. 5(2), 61–75 (2017)2. Viloria, A., Lis-Gutierrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (Big Data). In: Tan, Y., Shi, Y., Tang, Q. (Eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)3. Lee, A., Taylor, P., Kalpathy-Cramer, J.: A Tufail Machine learning has arrived! Ophthalmology 124, 1726–1728 (2017)4. Yao, L.: The present situation and development tendency of higher education quality evaluation in Western Countries, p. 2006. Educ. Beef, Priv (2006)5. Gregorutti, B., Michel, B., Saint-Pierre, P.: Grouped variable importance with random forests and application to multiple functional data analysis. Comput. Stat. Data Anal. 90, 15–35 (2015)6. Guo, Y., Hastie, T., Tibshirani, R.: Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8(1), 86–100 (2006)7. Wickramarachchi, D., Robertson, B., Reale, M., Price, C., Brown, J.: HHCART: an oblique decision tree. Comput. Stat. Data Anal. 96, 12–23 (2016)8. Hong, S., Yang, D., Park, B., et al.: An efficient intra-mode decision method for HEVC. SIViP 10(6), 1–9 (2016)9. Kavzoglu, T., Sahin, E.K., Colkesen, I.: An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat. Hazards 76, 471–496 (2015)10. Lei, J., Sun, Z., Gu, Z., Zhu, T., Ling, N., Wu, F.: Simplified search algorithm for explicit wedgelet signalization mode in 3D-HEVC. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, pp. 805–810 (2017)11. Zhao, J., Zhao, X., Zhang, W., et al.: An efficient depth modeling mode decision algorithm for 3D-HEVC depth map coding. Optik Int. J. Light Electron Opt. 127(24), 12048–12055 (2016)12. Aghdam, I.N., Varzandeh, M.H.M., Pradhan, B.: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environ. Earth Sci. 75, 553 (2016)13. Liu, P., He, G., Xue, S., Li, Y.: A fast mode selection for depth modelling modes of intra depth coding in 3D-HEVC. In: 2016 Visual Communications and Image Processing (VCIP), Chengdu, pp. 1–4 (2016)14. Guo, R., He, G., Li, Y., Wang, K.: Fast algorithm for prediction unit and mode decisions of intra depth coding in 3D-HEVC. In: 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, pp. 1121–1125 (2016)15. Bonerge Pineda Lezama, O., Varela Izquierdo, N., Pérez Fernández, D., Gómez Dorta, R.L., Viloria, A., Romero Marín, L.: Models of multivariate regression for labor accidents in different production sectors: comparative study. In: Tan, Y., Shi, Y., Tang, Q. (Eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)16. Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (Eds.) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science, vol. 10942. Springer, Cham (2018)17. Yao, Y., Zhao, X., Du, H., Zhang, Y., Zhang, G., Rong, J.: Classification of fatigued and drunk driving based on decision tree methods: a simulator study. Int. J. Environ. Res. Public Health 2019, 16 (1935)18. Li, Y.Z., Zhang, N., Liu, F., et al.: Application of apriori algorithm based on information theory optimization in traffic accident analysis. Inf. Syst. Eng. 10, 80–84 (2016)19. Lombardi, D.A., Horrey, W.J., Courtney, T.K.: Age-related differences in fatal intersection crashes in the United States. Accid. Anal. Prev. 99(Pt A), 20 (2016)20. Liu, Z.Q., Wang, L., Zhang, A.H.: Study on the mechanism of traffic accidents in wusongtian highway based on bayesian model. J. Chongqing Univ. Technol. 1, 43–49 (2018)21. Markov, Z., Russell, I.: An introduction to the WEKA data mining system[C]. In: Sigcse Conference on Innovation & Technology in Computer Science Education, pp. 367–368. ACM (2006)22. Gao, Y., Dong, X., Tian, F.: Analysis of current situation of highway traffic safety and management countermeasures. China Saf. Prod. Sci. Technol. 11(10), 110–115 (2015)23. Amelec, V.: Validation of strategies to reduce exhausted shelf products in a pharmaceutical chain. Adv. Sci. Lett. 21(5), 1403–1405 (2015)24. Amelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015)PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/db01c764-48f3-4ea3-a13a-4a091156139d/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALSales segmentation for a mobile phone service through logistic regression algorithm.pdfSales segmentation for a mobile phone service through logistic regression algorithm.pdfapplication/pdf93454https://repositorio.cuc.edu.co/bitstreams/78c04a28-d4ed-4830-8861-acd1a55895fd/download59dd2a68c6aa098bbabc67e1957711aeMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/da1c7efe-94f9-4076-8306-2b34b6ef6068/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILSales segmentation for a mobile phone service through logistic regression algorithm.pdf.jpgSales segmentation for a mobile phone service through logistic regression algorithm.pdf.jpgimage/jpeg27398https://repositorio.cuc.edu.co/bitstreams/def29a50-17e6-4993-a47c-091e42ae3219/downloadbee1d96758419a66a33b6e1dc30dacb2MD54TEXTSales segmentation for a mobile phone service through logistic regression algorithm.pdf.txtSales segmentation for a mobile phone service through logistic regression algorithm.pdf.txttext/plain892https://repositorio.cuc.edu.co/bitstreams/cf0b4a47-dd08-4a21-9a04-2418be8841b1/download9b73ca0882cf3e5a34dec6b0525d7e7cMD5511323/7758oai:repositorio.cuc.edu.co:11323/77582024-09-17 14:15:12.087http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |