Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children
Children with attention-deficit/hyperactivity disorder (ADHD) present a deficit in inhibitory control. Still, it remains unclear whether it comes from a deficit in reactive inhibition (ability to stop the action in progress), proactive inhibition (ability to exert preparatory control), or both. We c...
- Autores:
-
Suarez Del Chiaro, Isabel Cristina
De los Reyes Aragon, Carlos Jose
Grandjean, Aurélie
Barcelo Martinez, Ernesto Alejandro
mebarak, moises
Lewis Harb, Soraya
Pineda-Alhucema, Wilmar
Casini, Laurence
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9203
- Acceso en línea:
- https://hdl.handle.net/11323/9203
https://doi.org/10.1080/02643294.2022.2031944
https://repositorio.cuc.edu.co/
- Palabra clave:
- Children with ADHD
Congruency sequence effect
Proactive inhibition
Reactive inhibition
Simon task
- Rights
- embargoedAccess
- License
- © 2022 Informa UK Limited, trading as Taylor & Francis Group
id |
RCUC2_9aab33aca34cc96751e3d5eb3af41d7b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9203 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children |
title |
Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children |
spellingShingle |
Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children Children with ADHD Congruency sequence effect Proactive inhibition Reactive inhibition Simon task |
title_short |
Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children |
title_full |
Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children |
title_fullStr |
Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children |
title_full_unstemmed |
Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children |
title_sort |
Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children |
dc.creator.fl_str_mv |
Suarez Del Chiaro, Isabel Cristina De los Reyes Aragon, Carlos Jose Grandjean, Aurélie Barcelo Martinez, Ernesto Alejandro mebarak, moises Lewis Harb, Soraya Pineda-Alhucema, Wilmar Casini, Laurence |
dc.contributor.author.spa.fl_str_mv |
Suarez Del Chiaro, Isabel Cristina De los Reyes Aragon, Carlos Jose Grandjean, Aurélie Barcelo Martinez, Ernesto Alejandro mebarak, moises Lewis Harb, Soraya Pineda-Alhucema, Wilmar Casini, Laurence |
dc.subject.proposal.eng.fl_str_mv |
Children with ADHD Congruency sequence effect Proactive inhibition Reactive inhibition Simon task |
topic |
Children with ADHD Congruency sequence effect Proactive inhibition Reactive inhibition Simon task |
description |
Children with attention-deficit/hyperactivity disorder (ADHD) present a deficit in inhibitory control. Still, it remains unclear whether it comes from a deficit in reactive inhibition (ability to stop the action in progress), proactive inhibition (ability to exert preparatory control), or both. We compared the performance of 39 children with ADHD and 42 typically developing children performing a Simon choice reaction time task. The Simon task is a conflict task that is well-adapted to dissociate proactive and reactive inhibition. Beyond classical global measures (mean reaction time, accuracy rate, and interference effect), we used more sophisticated dynamic analyses of the interference effect and accuracy rate to investigate reactive inhibition. We studied proactive inhibition through the congruency sequence effect (CSE). Our results showed that children with ADHD had impaired reactive but not proactive inhibition. Moreover, the deficit found in reactive inhibition seems to be due to both a stronger impulse capture and more difficulties in inhibiting impulsive responses. These findings contribute to a better understanding of how ADHD affects inhibitory control in children. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-05-31T22:49:34Z |
dc.date.available.none.fl_str_mv |
2022-05-31T22:49:34Z 2023-02-24 |
dc.date.issued.none.fl_str_mv |
2022-02-24 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Isabel Suarez, Carlos De los Reyes Aragón, Aurelie Grandjean, Ernesto Barceló, Moises Mebarak, Soraya Lewis, Wilmar Pineda-Alhucema & Laurence Casini (2021) Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children, Cognitive Neuropsychology, 38:5, 349-363, DOI: 10.1080/02643294.2022.2031944 |
dc.identifier.issn.spa.fl_str_mv |
0264-3294 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9203 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1080/02643294.2022.2031944 |
dc.identifier.doi.spa.fl_str_mv |
10.1080/02643294.2022.2031944 |
dc.identifier.eissn.spa.fl_str_mv |
1464-0627 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Isabel Suarez, Carlos De los Reyes Aragón, Aurelie Grandjean, Ernesto Barceló, Moises Mebarak, Soraya Lewis, Wilmar Pineda-Alhucema & Laurence Casini (2021) Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children, Cognitive Neuropsychology, 38:5, 349-363, DOI: 10.1080/02643294.2022.2031944 0264-3294 10.1080/02643294.2022.2031944 1464-0627 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9203 https://doi.org/10.1080/02643294.2022.2031944 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Cognitive Neuropsychology |
dc.relation.references.spa.fl_str_mv |
Aman, C. J., Roberts, R. J., & Pennington, B. F. (1998). A neuropsychological examination of the underlying deficit in attention deficit hyperactivity disorder: Frontal lobe versus right parietal lobe theories. Developmental Psychology, 34(5), 956–969. https://doi.org/10.1037/0012-1649.34.5.956 American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders. Fourth Edition Revised (DSM IV-TR). Aron, A. R. (2007). The neural basis of inhibition in cognitive control. The Neuroscientist, 13(3), 214–228. https://doi.org/10.1177/1073858407299288 Barkley, R. R. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65–94. https://doi.org/10.1037/0033-2909.121.1.65 Bitsakou, P., Psychogiou, L., Thompson, M., & Sonuga-Barke, E. J. S. (2008). Inhibitory deficits in attention-deficit/hyperactivity disorder are independent of basic processing efficiency and IQ. Journal of Neural Transmission, 115(2), 261–268. https://doi.org/10.1007/s00702-007-0828-z Bluschke, A., Chmielewski, W. X., Roessner, V., & Beste, C. (2020). Intact context-dependent modulation of conflict monitoring in childhood ADHD. Journal of Attention Disorders, 24(11), 1503–1510. https://doi.org/10.1177/1087054716643388 Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., … Mesulam, M. M. (2005). Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology and Psychiatry, 46(1), 94–111. https://doi.org/10.1111/j.1469-7610.2004.00337.x Borella, E., de Ribaupierre, A., Cornoldi, C., & Chicherio, C. (2013). Beyond interference control impairment in ADHD: Evidence from increased intraindividual variability in the color-stroop test. Child Neuropsychology, 19(5), 495–515. https://doi.org/10.1080/09297049.2012.696603 Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. https://doi.org/10.1037/0033-295X.108.3.624 Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. https://doi.org/10.1016/j.tics.2011.12.010 Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. Variation in working memory (pp. 76-106). Oxford University Press. Brickenkamp, R., & Zillmer, E. (1998). The d2 test of attention. Seattle. Hogrefe & Huber Publishers. Burle, B., Possamaï, C. A., Vidal, F., Bonnet, M., & Hasbroucq, T. (2002). Executive control in the Simon effect: An electromyographic and distributional analysis. Psychological Research, 66(4), 324–336. https://doi.org/10.1007/s00426-002-0105-6 Burle, B., Spieser, L., Servant, M., & Hasbroucq, T. (2014). Distributional reaction time properties in the Eriksen task: Marked differences or hidden similarities with the Simon task? Psychonomic Bulletin & Review, 21(4), 1003–1010. https://doi.org/10.3758/s13423-013-0561-6 Cantwell, D. P. (1996). Attention Deficit disorder: A review of the past 10 years. Journal of the American Academy of Child & Adolescent Psychiatry, 35(8), 978–987. https://doi.org/10.1097/00004583-199608000-00008 Cortese, S., Kelly, C., Chabernaud, C., Proal, E., Di Martino, A., Milham, M. P., & Castellanos, F. X. (2012). Toward systems neuroscience of ADHD: A meta-analysis of 55 fMRI studies. American Journal of Psychiatry, 169(10), 1038–1055. https://doi.org/10.1176/appi.ajp.2012.11101521 Cubillo, A., Halari, R., Giampietro, V., Taylor, E., & Rubia, K. (2011). Fronto-striatal underactivation during interference inhibition and attention allocation in grown up children with attention deficit/hyperactivity disorder and persistent symptoms. Psychiatry Research: Neuroimaging, 193(1), 17–27. https://doi.org/10.1016/j.pscychresns.2010.12.014 De Jong, R., Liang, C. C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 731–750. https://doi.org/10.1037/0096-1523.20.4.731 DeShazo Barry, T., Klinger, L. G., Lyman, R. D., Bush, D., & Hawkins, L. (2001). Visual selective attention versus sustained attention in boys with attention-deficit/ hyperactivity disorder. Journal of Attention Disorders, 4(4), 193–202. https://doi.org/10.1177/108705470100400401 Dickstein, S. G., Bannon, K., Castellanos, F. X., & Milham, M. P. (2006). The neural correlates of attention deficit hyperactivity disorder: An ALE meta-analysis. Journal of Child Psychology and Psychiatry, 47(10), 1051–1062. https://doi.org/10.1111/j.1469-7610.2006.01671.x Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 380–390. https://doi.org/10.3758/CABN.7.4.380 Enriquez-Geppert, S., Smit, D., Pimenta, M. G., & Arns, M. (2019). Neurofeedback as a treatment intervention in ADHD: Current evidence and practice. Current Psychiatry Reports, 21(6), 46. https://doi.org/10.1007/s11920-019-1021-4 Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267 Farré, A., & Narbona, J. (1998). EDAH. Escalas para la evaluación del trastorno por déficit de atención con hiperactividad. (TEA). Madrid. Fluchère, F., Burle, B., Vidal, F., van den Wildenberg, W., Witjas, T., Eusebio, A., Azulay, J.-P., & Hasbroucq, T. (2018). Subthalamic nucleus stimulation, dopaminergic treatment and impulsivity in Parkinson’s disease. Neuropsychologia, 117, 167–177. https://doi.org/10.1016/j.neuropsychologia.2018.02.016 Fluchère, F., Deveaux, M., Burle, B., Vidal, F., van den Wildenberg, W. P. M., Witjas, T., Eusebio, A., Azulay, J.-P., & Hasbroucq, T. (2015). Dopa therapy and action impulsivity: Subthreshold error activation and suppression in Parkinson’s disease. Psychopharmacology, 232(10), 1735–1746. https://doi.org/10.1007/s00213-014-3805-x Forstmann, B. U., van den Wildenberg, W. P. M., & Ridderinkhof, K. R. (2008). Neural mechanisms, temporal dynamics, and individual differences in interference control. Journal of Cognitive Neuroscience, 20(10), 1854–1865. https://doi.org/10.1162/jocn.2008.20122 Grandjean, A., Suarez, I., Diaz, E., Spieser, L., Burle, B., Blaye, A., & Casini, L. (2021a). Stronger impulse capture and impaired inhibition of prepotent action in children with ADHD performing a Simon task: An electromyographic study. Neuropsychology, 35(4), 399–410. https://doi.org/10.1037/neu0000668 Grandjean, A., Suarez, I., Miquee, A., Fonseca, D. D., & Casini, L. (2021b). Differential response to pharmacological intervention in ADHD furthers our understanding of the mechanisms of interference control. Cognitive Neuropsychology, 38(2), 138–152. https://doi.org/10.1080/02643294.2021.1908979 Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480–506. https://doi.org/10.1037/0096-3445.121.4.480 Hedge, A., & Marsh, N. (1975). The effect of irrelevant spatial correspondences on two-choice response-time. Acta Psychologica, 39(6), 427–439. https://doi.org/10.1016/0001-6918(75)90041-4 Homack, S., & Riccio, C. A. (2004). A meta-analysis of the sensitivity and specificity of the Stroop color and word test with children. Archives of Clinical Neuropsychology, 19(6), 725–743. https://doi.org/10.1016/j.acn.2003.09.003 Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136(2), 189–202. https://doi.org/10.1016/j.actpsy.2010.04.011 Hommel, B., Proctor, R. W., & Vu, K.-P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68(1), 1–17. https://doi.org/10.1007/s00426-003-0132-y Hooks, K., Milich, R., & Lorch, E. P. (1994). Sustained and selective attention in boys with attention deficit hyperactivity disorder. Journal of Clinical Child Psychology, 23(1), 69–77. https://doi.org/10.1207/s15374424jccp2301_9 Jiang, W., Rootes-Murdy, K., Duan, K., Schoenmacker, G., Hoekstra, P. J., Hartman, C. A., Oosterlaan, J., Heslenfeld, D., Franke, B., Sprooten, E., Buitelaar, J., Arias-Vasquez, A., Liu, J., & Turner, J. A. (2021). Discrepancies of polygenic effects on symptom dimensions between adolescents and adults with ADHD. Psychiatry Research: Neuroimaging, 311, 111–282. https://doi.org/10.1016/j.pscychresns.2021.111282 King, J. A., Colla, M., Brass, M., Heuser, I., & Von Cramon, D. Y. (2007). Inefficient cognitive control in adult ADHD: Evidence from trial-by-trial Stroop test and cued task switching performance. Behavioral and Brain Functions, 3(1), 42. https://doi.org/10.1186/1744-9081-3-42 Klein, C., Wendling, K., Huettner, P., Ruder, H., & Peper, M. (2006). Intrasubject variability in attention-deficit hyperactivity disorder. Biological Psychiatry, 60(10), 1088–1097. https://doi.org/10.1016/j.biopsych.2006.04.003 Kofler, M. J., Alderson, R. M., Raiker, J. S., Bolden, J., Sarver, D. E., & Rapport, M. D. (2014). Working memory and intra-individual variability as neurocognitive indicators in ADHD: Examining competing model predictions. Neuropsychology, 28(3), 459–471. https://doi.org/10.1037/neu0000050 Kofler, M. J., Rapport, M. D., Sarver, D. E., Raiker, J. S., Orban, S. A., Friedman, L. M., & Kolomeyer, E. G. (2013). Reaction time variability in ADHD: A meta-analytic review of 319 studies. Clinical Psychology Review, 33(6), 795–811. https://doi.org/10.1016/j.cpr.2013.06.001 Kornblum, S. (1994). The way irrelevant dimensions are processed depends on what they overlap with: The case of stroop- and simon-like stimuli. Psychological Research, 56(3), 130–135. https://doi.org/10.1007/BF00419699 Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility--A model and taxonomy. Psychological Review, 97(2), 253–270. https://doi.org/10.1037/0033-295X.97.2.253 Lansbergen, M. M., Kenemans, J. L., & van Engeland, H. (2007). Stroop interference and attention-deficit/hyperactivity disorder: A review and meta-analysis. Neuropsychology, 21(2), 251–262. https://doi.org/10.1037/0894-4105.21.2.251 Lipszyc, J., & Schachtar, R. (2010). Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task. Journal of the International Neuropsychological Society, 16(6), 1064–1076. https://doi.org/10.1017/S1355617710000895 Lundervold, A. J., Adolfsdottir, S., Halleland, H., Halmoy, A., Plessen, K. J., & Haavik, J. (2011). Attention network test in adults with ADHD - the impact of affective fluctuations. Behavioral and Brain Functions, 7(1), 27. https://doi.org/10.1186/1744-9081-7-27 Madras, B. K., Miller, G. M., & Fischman, A. J. (2005). The dopamine transporter and attentiondeficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1397–1409. https://doi.org/10.1016/j.biopsych.2004.10.011 Mancini, C., Cardona, F., Baglioni, V., Panunzi, S., Pantano, P., Suppa, A., & Mirabella, G. (2018). Inhibition is impaired in children with obsessive-compulsive symptoms but not in those with tics. Movement Disorders, 33(6), 950–959. https://doi.org/10.1002/mds.27406 Mancini, C., & Mirabella, G. (2021). Handedness does not impact inhibitory control, but movement execution and reactive inhibition are more under a left-hemisphere control. Symmetry, 13(9), 1602. https://doi.org/10.3390/sym13091602 Mason, D. J., Humphreys, G. W., & Kent, L. S. (2003). Exploring selective attention in ADHD: Visual search through space and time. Journal of Child Psychology and Psychiatry, 44(8), 1158–1176. https://doi.org/10.1111/1469-7610.00204 Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43(3), 679–690. https://doi.org/10.3758/s13428-010-0049-5 Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450–452. https://doi.org/10.1038/nn1051 McAvinue, L. P., Vangkilde, S., Johnson, K. A., Habekost, T., Kyllingsbæk, S., Bundesen, C., & Robertson, I. H. (2015). A componential analysis of visual attention in children with ADHD. Journal of Attention Disorders, 19(10), 882–894. https://doi.org/10.1177/1087054712461935 Mirabella, G. (2014). Should I stay or should I go? Conceptual underpinnings of goal-directed actions. Frontiers in Systems Neuroscience, 8(206). https://doi.org/10.3389/fnsys.2014.00206 Mirabella, G. (2021). Inhibitory control and impulsive responses in neurodevelopmental disorders. Developmental Medicine & Child Neurology, 63(5), 520–526. https://doi.org/10.1111/dmcn.14778 Mirabella, G., & Lebedev, M. A. (2017). Interfacing to the brain’s motor decisions. Journal of Neurophysiology, 117(3), 1305–1319. https://doi.org/10.1152/jn.00051.2016 Mirabella, G., Mancini, C., Valente, F., & Cardona, F. (2020). Children with primary complex motor stereotypies show impaired reactive but not proactive inhibition. Cortex, 124, 250–259. https://doi.org/10.1016/j.cortex.2019.12.004 Mullane, J. C., Corkum, P. V., Klein, R. M., & McLaughlin, E. (2009). Interference control in children with and without ADHD: A systematic review of flanker and Simon task performance. Child Neuropsychology, 15(4), 321–342. https://doi.org/10.1080/09297040802348028 Nigg, J. T. (2001). Is ADHD a disinhibitory disorder? Psychological Bulletin, 127(5), 571–598. https://doi.org/10.1037/0033-2909.127.5.571 Notebaert, W., Gevers, W., Verbruggen, F., & Liefooghe, B. (2006). Top-down and bottom-up sequential modulations of congruency effects. Psychonomic Bulletin & Review, 13(1), 112–117. https://doi.org/10.3758/BF03193821 Polanczyk, G. V., Salum, G. A., Sugaya, L. S., Caye, A., & Rohde, L. A. (2015). Annual research review: A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. Journal of Child Psychology and Psychiatry, 56(3), 345–365. https://doi.org/10.1111/jcpp.12381 Proctor, R. W., Lu, C.-H., Wang, H., & Dutta, A. (1995). Activation of response codes by relevant and irrelevant stimulus information. Acta Psychologica, 90(1-3), 275–286. https://doi.org/10.1016/0001-6918(95)00030-X Ramdani, C., Carbonnell, L., Vidal, F., Béranger, C., Dagher, A., & Hasbroucq, T. (2015). Dopamine precursors depletion impairs impulse control in healthy volunteers. Psychopharmacology, 232(2), 477–487. https://doi.org/10.1007/s00213-014-3686-z Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86(3), 446–461. https://doi.org/10.1037/0033-2909.86.3.446 Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks: Empirical clarification through distributional analyses. In W. Prinz, & B. Hommel (Eds.), Common mechanisms in Perception and action. Attention & performance: Vol. XIX (pp. 494–519). Oxford University Press. Ridderinkhof, K. R., Forstmann, B. U., Wylie, S. A., Burle, B., & van den Wildenberg, W. P. M. (2011). Neurocognitive mechanisms of action control: Resisting the call of the sirens. WIRES Cognitive Science, 2(2), 174–192. https://doi.org/10.1002/wcs.99 Ridderinkhof, K. R., Scheres, A., Oosterlaan, J., & Sergeant, J. A. (2005). Delta plots in the study of individual differences: New tools reveal response inhibition deficits in AD/HD that are eliminated by methylphenidate treatment. Journal of Abnormal Psychology, 114(2), 197. https://doi.org/10.1037/0021-843X.114.2.197 Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443–447. https://doi.org/10.1126/science.1100301 Rubia, K., Cubillo, A., Smith, A. B., Woolley, J., Heyman, I., & Brammer, M. J. (2010). Disorder-specific dysfunction in right inferior prefrontal cortex during two inhibition tasks in boys with attention-deficit hyperactivity disorder compared to boys with obsessive-compulsive disorder. Human Brain Mapping, 31(2), 287–299. https://doi.org/10.1002/hbm.20864 Rubia, K., Halari, R., Cubillo, A., Smith, A. B., Mohammad, A. M., Brammer, M., & Taylor, E. (2011). Methylphenidate normalizes fronto-striatal underactivation during interference inhibition in medication-naïve boys with attention-deficit hyperactivity disorder. Neuropsychopharmacology, 36(8), 1575–1586. https://doi.org/10.1038/npp.2011.30 Sánchez, C. R., Ramos, C., Díaz, F., & Simón, M. (2010). Validación de la escala de evaluación del trastorno por déficit de atención/hiperactividad (EDAH) en población adolescente. Revista de Neurología, 50(5), 283–290. https://doi.org/10.33588/rn.5005.2009258 Schmitt, L. M., White, S. P., Cook, E. H., Sweeney, J. A., & Mosconi, M. W. (2018). Cognitive mechanisms of inhibitory control deficits in autism spectrum disorder. Journal of Child Psychology and Psychiatry, 59(5), 586–595. https://doi.org/10.1111/jcpp.12837 Schwartz, K., & Verhaeghen, P. (2008). ADHD and Stroop interference from age 9 to age 41 years: A meta-analysis of developmental effects. Psychological Medicine, 38(11), 1607–1616. https://doi.org/10.1017/S003329170700267X Sidlauskaite, J., Dhar, M., Sonuga-Barke, E., & Wiersema, J. R. (2020). Altered proactive control in adults with ADHD: Evidence from event-related potentials during cued task switching. Neuropsychologia, 138, 107330. https://doi.org/10.1016/j.neuropsychologia.2019.107330 Simon, J. R. (1969). Reactions toward the source of stimulation. Journal of Experimental Psychology, 81(1), 174–176. https://doi.org/10.1037/h0027448 Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor, & T. G. Reeve (Eds.), Stimulus–response compatibility: An integrated perspective (pp. 31–86). North-Holland. Sonuga-Barke, E. J. S., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience & Biobehavioral Reviews, 31(7), 977–986. https://doi.org/10.1016/j.neubiorev.2007.02.005 Stevens, M., Lammertyn, J., Verbruggen, F., & Vandierendonck, A. (2006). Tscope: A C library for programming cognitive experiments on the MS windows platform. Behavior Research Methods, 38(2), 280–286. https://doi.org/10.3758/BF03192779 Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. https://doi.org/10.1037/h0054651 Suarez, I., Burle, B., Tobon, C., Pineda, D., Lopera, F., Hasbroucq, T., & Casini, L. (2015). Deciphering interference control in adults with ADHD by using distribution analyses and electromyographic activity. Acta Psychologica, 159, 85–92. https://doi.org/10.1016/j.actpsy.2015.05.010 Suarez, I., Vidal, F., Burle, B., & Casini, L. (2015). A dual-task paradigm to study the interference reduction in the Simon task. Experimental Psychology, 32(2), 75–88. https://doi.org/10.1027/1618-3169/a000275 Tamm, L., Nakonezny, P. A., & Hughes, C. W. (2012). An open trial of a metacognitive executive function training for young children with ADHD. Journal of Attention Disorders, 18(6), 551–559. https://doi.org/10.1177/1087054712445782 Thapar, A., & Cooper, M. (2016). Attention deficit hyperactivity disorder. Lancet (London, England), 387(10024), 1240–1250. https://doi.org/10.1016/S0140-6736(15)00238-X Tsal, Y., Shalev, L., & Mevorach, C. (2005). The diversity of attention deficits in ADHD. Journal of Learning Disabilities, 38(2), 142–157. https://doi.org/10.1177/00222194050380020401 Van den Wildenberg, W. P. M., Wylie, S. A., Forstmann, B. U., Burle, B., Hasbroucq, T., & Ridderinkhof, K. R. (2010). To head or to heed? Beyond the surface of selective action inhibition: A review. Frontiers in Human Neuroscience, 4(222). https://doi.org/10.3389/fnhum.2010.00222 van Hulst, B. M., de Zeeuw, P., Vlaskamp, C., Rijks, Y., Zandbelt, B. B., & Durston, S. (2018). Children with ADHD symptoms show deficits in reactive but not proactive inhibition, irrespective of their formal diagnosis. Psychological Medicine, 48(15), 2515–2521. https://doi.org/10.1017/S0033291718000107 Van Hulst, B. M., de Zeeuw, P., Vlaskamp, C., Rijks, Y., Zandbelt, B. B., & Durston, S. (2018). Children with ADHD symptoms show deficits in reactive but not proactive inhibition, irrespective of their formal diagnosis. Psychological Medicine, 48(15), 2515–2521. https://doi.org/10.1017/S0033291718000107 Van Mourik, R., Papanikolau, A., Van Gellicum-Bijlhout, J., Van Oostenbruggen, J., Veugelers, D., Post-Uiterweer, A., Sergeant J., & Oosterlaan, J. (2009). Interference control in children with attention deficit/hyperactivity disorder. Journal of Abnormal Child Psychology, 37(2), 293–303. https://doi.org/10.1007/s10802-008-9277-x Van Wouve, N. C., Kanoff, K. E., Claassen, D. O., Spears, C. A., Neimat, J., van den Wildenberg, V. P. M., & Wylie, S. A. (2016). Dissociable effects of dopamine on the initial capture and the reactive inhibition of impulsive actions in Parkinson’s disease. Journal of Cognitive Neuroscience, 28(5), 710–723. https://doi.org/10.1162/jocn_a_00930 Vincent, S. B. (1912). The function of the vibrissae in the behavior of the white rat. Animal Behavior Monographs, 1(5), 1–181. Volkow, N. D. (1995). Is Methylphenidate Like Cocaine? Studies on Their Pharmacokinetics and Distribution in the Human Brain. Archives of General Psychiatry, 52(6), 456–563. https://doi.org/10.1001/archpsyc.1995.03950180042006 Volkow, N. D. (2002). Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: Results from imaging studies. European Neuropsychopharmacology, 12(6), 557–566. https://doi.org/10.1016/S0924-977X(02)00104-9 Volkow, N. D., Wang, G.-J., Fowler, J. S., Logan, J., Gerasimov, M., Maynard, L., Ding, Y.-S., Gatley, S. J., Gifford, A., & Franceschi, D. (2001). Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. The Journal of Neuroscience, 21(23)(9414), RC121.https://doi.org/10.1523/JNEUROSCI.21-23-09414.2001. Wijnen, J. G., & Ridderinkhof, K. R. (2007). Response inhibition in motor and oculomotor conflict tasks: Different mechanisms, different dynamics? Brain and Cognition, 63(3), 260–270. https://doi.org/10.1016/j.bandc.2006.09.003 Wilens, T. E. (2003). Drug therapy for adults with attention-deficit Hyperactivity disorder. Drugs, 63(22), 2395–2411. https://doi.org/10.2165/00003495-200363220-00002 Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57(11), 1336–1346. https://doi.org/10.1016/j.biopsych.2005.02.006 Wöstmann, N. M., Aichert, D. S., Costa, A., Rubia, K., Möller, H. J., & Ettinger, U. (2013). Reliability and plasticity of response inhibition and interference control. Brain and Cognition, 81(1), 82–94. https://doi.org/10.1016/j.bandc.2012.09.010 Wylie, S. A., Claassen, D. O., Huizenga, H. M., Schewel, K. D., Ridderinkhof, K. R., Bashore, T. R., & van den Wildenberg, W. P. M. (2012). Dopamine agonists and the suppression of impulsive motor actions in Parkinson disease. Journal of Cognitive Neuroscience, 24(8), 1709–1724. https://doi.org/10.1162/jocn_a_00241 Wylie, S. A., Claassen, D. O., Kanoff, K., Ridderinkhof, K. R., & van den Wildenberg, W. P. M. (2013). Impaired inhibition of prepotent motor actions in patients with tourette syndrome. Journal of Psychiatry & Neuroscience, 38(5), 349–356. https://doi.org/10.1503/jpn.120138 Wylie, S. A., Ridderinkhof, K. R., Bashore, T. R., & van den Wildenberg, W. P. M. (2010). The effect of Parkinson’s disease on the dynamics of On-line and proactive cognitive control during action selection. Journal of Cognitive Neuroscience, 22(9), 2058–2073. https://doi.org/10.1162/jocn.2009.21326 Wylie, S. A., Ridderinkhof, K. R., Eckerle, M. K., & Manning, C. A. (2007). Inefficient response inhibition in individuals with mild cognitive impairment. Neuropsychologia, 45(7), 1408–1419. https://doi.org/10.1016/j.neuropsychologia.2006.11.003 Wylie, S.A., Ridderinkhof, K.R., Elias, W.J., Frysinger, R.C., Bashore, T.R., Downs, K.E., van Wouwe, N.C. and van den Wildenberg, W.P. (2010a). Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson’s disease. Brain, 133(12), 3611–3624. https://doi.org/10.1093/brain/awq239 Wylie, S. A., van den Wildenberg, W. P. M., Ridderinkhof, K. R., Bashore, T. R., Powell, V. D., Manning, C. A., & Wooten, G. F. (2009). The effect of Parkinson’s disease on interference control during action selection. Neuropsychologia, 47(1), 145–157. https://doi.org/10.1016/j.neuropsychologia.2008.08.001 Xu, G., Strathearn, L., Liu, B., Yang, B., & Bao, W. (2018). Twenty-year trends in diagnosed attention-deficit/hyperactivity disorder among US children and adolescents, 1997-2016. JAMA Network Open, 1(4), e181471–e181471. https://doi.org/10.1001/jamanetworkopen.2018.1471 Zamorano, F., Kausel, L., Albornoz, C., Lavin, C., Figueroa-Vargas, A., Stecher, X., Aragón-Caqueo, D., Carrasco, X., Aboitiz, F., & Billeke, P. (2020). Lateral prefrontal theta oscillations reflect proactive cognitive control impairment in males with attention deficit hyperactivity disorder. Frontiers in Systems Neuroscience, 14, 37. https://doi.org/10.3389/fnsys.2020.00037 |
dc.relation.citationendpage.spa.fl_str_mv |
363 |
dc.relation.citationstartpage.spa.fl_str_mv |
349 |
dc.relation.citationissue.spa.fl_str_mv |
5 |
dc.relation.citationvolume.spa.fl_str_mv |
38 |
dc.rights.spa.fl_str_mv |
© 2022 Informa UK Limited, trading as Taylor & Francis Group Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
© 2022 Informa UK Limited, trading as Taylor & Francis Group Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Taylor and Francis Ltd. |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.tandfonline.com/doi/full/10.1080/02643294.2022.2031944 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/30dac9da-6a26-4b84-8813-617303cbbc8f/download https://repositorio.cuc.edu.co/bitstreams/8ac52a78-0a79-4c78-acd3-474cc4891c8f/download https://repositorio.cuc.edu.co/bitstreams/46117c21-46b0-4342-9cf2-9609807f5fb7/download https://repositorio.cuc.edu.co/bitstreams/904c9035-87d0-481a-b7fc-748224e965bf/download |
bitstream.checksum.fl_str_mv |
226d2c4e293035a2154bb2cb62b3abac e30e9215131d99561d40d6b0abbe9bad cc7d7a868bbf9a395317272640145cbb facf29877139edab19ce84e6c094511c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760832231505920 |
spelling |
Suarez Del Chiaro, Isabel CristinaDe los Reyes Aragon, Carlos JoseGrandjean, AurélieBarcelo Martinez, Ernesto Alejandromebarak, moisesLewis Harb, SorayaPineda-Alhucema, Wilmar Casini, Laurence2022-05-31T22:49:34Z2023-02-242022-05-31T22:49:34Z2022-02-24Isabel Suarez, Carlos De los Reyes Aragón, Aurelie Grandjean, Ernesto Barceló, Moises Mebarak, Soraya Lewis, Wilmar Pineda-Alhucema & Laurence Casini (2021) Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children, Cognitive Neuropsychology, 38:5, 349-363, DOI: 10.1080/02643294.2022.20319440264-3294https://hdl.handle.net/11323/9203https://doi.org/10.1080/02643294.2022.203194410.1080/02643294.2022.20319441464-0627Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Children with attention-deficit/hyperactivity disorder (ADHD) present a deficit in inhibitory control. Still, it remains unclear whether it comes from a deficit in reactive inhibition (ability to stop the action in progress), proactive inhibition (ability to exert preparatory control), or both. We compared the performance of 39 children with ADHD and 42 typically developing children performing a Simon choice reaction time task. The Simon task is a conflict task that is well-adapted to dissociate proactive and reactive inhibition. Beyond classical global measures (mean reaction time, accuracy rate, and interference effect), we used more sophisticated dynamic analyses of the interference effect and accuracy rate to investigate reactive inhibition. We studied proactive inhibition through the congruency sequence effect (CSE). Our results showed that children with ADHD had impaired reactive but not proactive inhibition. Moreover, the deficit found in reactive inhibition seems to be due to both a stronger impulse capture and more difficulties in inhibiting impulsive responses. These findings contribute to a better understanding of how ADHD affects inhibitory control in children.15 páginasapplication/pdfengTaylor and Francis Ltd.United Kingdom© 2022 Informa UK Limited, trading as Taylor & Francis GroupAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfTwo sides of the same coin: ADHD affects reactive but not proactive inhibition in childrenArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.tandfonline.com/doi/full/10.1080/02643294.2022.2031944Cognitive NeuropsychologyAman, C. J., Roberts, R. J., & Pennington, B. F. (1998). A neuropsychological examination of the underlying deficit in attention deficit hyperactivity disorder: Frontal lobe versus right parietal lobe theories. Developmental Psychology, 34(5), 956–969. https://doi.org/10.1037/0012-1649.34.5.956American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders. Fourth Edition Revised (DSM IV-TR).Aron, A. R. (2007). The neural basis of inhibition in cognitive control. The Neuroscientist, 13(3), 214–228. https://doi.org/10.1177/1073858407299288Barkley, R. R. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65–94. https://doi.org/10.1037/0033-2909.121.1.65Bitsakou, P., Psychogiou, L., Thompson, M., & Sonuga-Barke, E. J. S. (2008). Inhibitory deficits in attention-deficit/hyperactivity disorder are independent of basic processing efficiency and IQ. Journal of Neural Transmission, 115(2), 261–268. https://doi.org/10.1007/s00702-007-0828-zBluschke, A., Chmielewski, W. X., Roessner, V., & Beste, C. (2020). Intact context-dependent modulation of conflict monitoring in childhood ADHD. Journal of Attention Disorders, 24(11), 1503–1510. https://doi.org/10.1177/1087054716643388Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., … Mesulam, M. M. (2005). Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology and Psychiatry, 46(1), 94–111. https://doi.org/10.1111/j.1469-7610.2004.00337.xBorella, E., de Ribaupierre, A., Cornoldi, C., & Chicherio, C. (2013). Beyond interference control impairment in ADHD: Evidence from increased intraindividual variability in the color-stroop test. Child Neuropsychology, 19(5), 495–515. https://doi.org/10.1080/09297049.2012.696603Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. https://doi.org/10.1037/0033-295X.108.3.624Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. https://doi.org/10.1016/j.tics.2011.12.010Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. Variation in working memory (pp. 76-106). Oxford University Press.Brickenkamp, R., & Zillmer, E. (1998). The d2 test of attention. Seattle. Hogrefe & Huber Publishers.Burle, B., Possamaï, C. A., Vidal, F., Bonnet, M., & Hasbroucq, T. (2002). Executive control in the Simon effect: An electromyographic and distributional analysis. Psychological Research, 66(4), 324–336. https://doi.org/10.1007/s00426-002-0105-6Burle, B., Spieser, L., Servant, M., & Hasbroucq, T. (2014). Distributional reaction time properties in the Eriksen task: Marked differences or hidden similarities with the Simon task? Psychonomic Bulletin & Review, 21(4), 1003–1010. https://doi.org/10.3758/s13423-013-0561-6Cantwell, D. P. (1996). Attention Deficit disorder: A review of the past 10 years. Journal of the American Academy of Child & Adolescent Psychiatry, 35(8), 978–987. https://doi.org/10.1097/00004583-199608000-00008Cortese, S., Kelly, C., Chabernaud, C., Proal, E., Di Martino, A., Milham, M. P., & Castellanos, F. X. (2012). Toward systems neuroscience of ADHD: A meta-analysis of 55 fMRI studies. American Journal of Psychiatry, 169(10), 1038–1055. https://doi.org/10.1176/appi.ajp.2012.11101521Cubillo, A., Halari, R., Giampietro, V., Taylor, E., & Rubia, K. (2011). Fronto-striatal underactivation during interference inhibition and attention allocation in grown up children with attention deficit/hyperactivity disorder and persistent symptoms. Psychiatry Research: Neuroimaging, 193(1), 17–27. https://doi.org/10.1016/j.pscychresns.2010.12.014De Jong, R., Liang, C. C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 731–750. https://doi.org/10.1037/0096-1523.20.4.731DeShazo Barry, T., Klinger, L. G., Lyman, R. D., Bush, D., & Hawkins, L. (2001). Visual selective attention versus sustained attention in boys with attention-deficit/ hyperactivity disorder. Journal of Attention Disorders, 4(4), 193–202. https://doi.org/10.1177/108705470100400401Dickstein, S. G., Bannon, K., Castellanos, F. X., & Milham, M. P. (2006). The neural correlates of attention deficit hyperactivity disorder: An ALE meta-analysis. Journal of Child Psychology and Psychiatry, 47(10), 1051–1062. https://doi.org/10.1111/j.1469-7610.2006.01671.xEgner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 380–390. https://doi.org/10.3758/CABN.7.4.380Enriquez-Geppert, S., Smit, D., Pimenta, M. G., & Arns, M. (2019). Neurofeedback as a treatment intervention in ADHD: Current evidence and practice. Current Psychiatry Reports, 21(6), 46. https://doi.org/10.1007/s11920-019-1021-4Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267Farré, A., & Narbona, J. (1998). EDAH. Escalas para la evaluación del trastorno por déficit de atención con hiperactividad. (TEA). Madrid.Fluchère, F., Burle, B., Vidal, F., van den Wildenberg, W., Witjas, T., Eusebio, A., Azulay, J.-P., & Hasbroucq, T. (2018). Subthalamic nucleus stimulation, dopaminergic treatment and impulsivity in Parkinson’s disease. Neuropsychologia, 117, 167–177. https://doi.org/10.1016/j.neuropsychologia.2018.02.016Fluchère, F., Deveaux, M., Burle, B., Vidal, F., van den Wildenberg, W. P. M., Witjas, T., Eusebio, A., Azulay, J.-P., & Hasbroucq, T. (2015). Dopa therapy and action impulsivity: Subthreshold error activation and suppression in Parkinson’s disease. Psychopharmacology, 232(10), 1735–1746. https://doi.org/10.1007/s00213-014-3805-xForstmann, B. U., van den Wildenberg, W. P. M., & Ridderinkhof, K. R. (2008). Neural mechanisms, temporal dynamics, and individual differences in interference control. Journal of Cognitive Neuroscience, 20(10), 1854–1865. https://doi.org/10.1162/jocn.2008.20122Grandjean, A., Suarez, I., Diaz, E., Spieser, L., Burle, B., Blaye, A., & Casini, L. (2021a). Stronger impulse capture and impaired inhibition of prepotent action in children with ADHD performing a Simon task: An electromyographic study. Neuropsychology, 35(4), 399–410. https://doi.org/10.1037/neu0000668Grandjean, A., Suarez, I., Miquee, A., Fonseca, D. D., & Casini, L. (2021b). Differential response to pharmacological intervention in ADHD furthers our understanding of the mechanisms of interference control. Cognitive Neuropsychology, 38(2), 138–152. https://doi.org/10.1080/02643294.2021.1908979Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480–506. https://doi.org/10.1037/0096-3445.121.4.480Hedge, A., & Marsh, N. (1975). The effect of irrelevant spatial correspondences on two-choice response-time. Acta Psychologica, 39(6), 427–439. https://doi.org/10.1016/0001-6918(75)90041-4Homack, S., & Riccio, C. A. (2004). A meta-analysis of the sensitivity and specificity of the Stroop color and word test with children. Archives of Clinical Neuropsychology, 19(6), 725–743. https://doi.org/10.1016/j.acn.2003.09.003Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136(2), 189–202. https://doi.org/10.1016/j.actpsy.2010.04.011Hommel, B., Proctor, R. W., & Vu, K.-P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68(1), 1–17. https://doi.org/10.1007/s00426-003-0132-yHooks, K., Milich, R., & Lorch, E. P. (1994). Sustained and selective attention in boys with attention deficit hyperactivity disorder. Journal of Clinical Child Psychology, 23(1), 69–77. https://doi.org/10.1207/s15374424jccp2301_9Jiang, W., Rootes-Murdy, K., Duan, K., Schoenmacker, G., Hoekstra, P. J., Hartman, C. A., Oosterlaan, J., Heslenfeld, D., Franke, B., Sprooten, E., Buitelaar, J., Arias-Vasquez, A., Liu, J., & Turner, J. A. (2021). Discrepancies of polygenic effects on symptom dimensions between adolescents and adults with ADHD. Psychiatry Research: Neuroimaging, 311, 111–282. https://doi.org/10.1016/j.pscychresns.2021.111282King, J. A., Colla, M., Brass, M., Heuser, I., & Von Cramon, D. Y. (2007). Inefficient cognitive control in adult ADHD: Evidence from trial-by-trial Stroop test and cued task switching performance. Behavioral and Brain Functions, 3(1), 42. https://doi.org/10.1186/1744-9081-3-42Klein, C., Wendling, K., Huettner, P., Ruder, H., & Peper, M. (2006). Intrasubject variability in attention-deficit hyperactivity disorder. Biological Psychiatry, 60(10), 1088–1097. https://doi.org/10.1016/j.biopsych.2006.04.003Kofler, M. J., Alderson, R. M., Raiker, J. S., Bolden, J., Sarver, D. E., & Rapport, M. D. (2014). Working memory and intra-individual variability as neurocognitive indicators in ADHD: Examining competing model predictions. Neuropsychology, 28(3), 459–471. https://doi.org/10.1037/neu0000050Kofler, M. J., Rapport, M. D., Sarver, D. E., Raiker, J. S., Orban, S. A., Friedman, L. M., & Kolomeyer, E. G. (2013). Reaction time variability in ADHD: A meta-analytic review of 319 studies. Clinical Psychology Review, 33(6), 795–811. https://doi.org/10.1016/j.cpr.2013.06.001Kornblum, S. (1994). The way irrelevant dimensions are processed depends on what they overlap with: The case of stroop- and simon-like stimuli. Psychological Research, 56(3), 130–135. https://doi.org/10.1007/BF00419699Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility--A model and taxonomy. Psychological Review, 97(2), 253–270. https://doi.org/10.1037/0033-295X.97.2.253Lansbergen, M. M., Kenemans, J. L., & van Engeland, H. (2007). Stroop interference and attention-deficit/hyperactivity disorder: A review and meta-analysis. Neuropsychology, 21(2), 251–262. https://doi.org/10.1037/0894-4105.21.2.251Lipszyc, J., & Schachtar, R. (2010). Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task. Journal of the International Neuropsychological Society, 16(6), 1064–1076. https://doi.org/10.1017/S1355617710000895Lundervold, A. J., Adolfsdottir, S., Halleland, H., Halmoy, A., Plessen, K. J., & Haavik, J. (2011). Attention network test in adults with ADHD - the impact of affective fluctuations. Behavioral and Brain Functions, 7(1), 27. https://doi.org/10.1186/1744-9081-7-27Madras, B. K., Miller, G. M., & Fischman, A. J. (2005). The dopamine transporter and attentiondeficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1397–1409. https://doi.org/10.1016/j.biopsych.2004.10.011Mancini, C., Cardona, F., Baglioni, V., Panunzi, S., Pantano, P., Suppa, A., & Mirabella, G. (2018). Inhibition is impaired in children with obsessive-compulsive symptoms but not in those with tics. Movement Disorders, 33(6), 950–959. https://doi.org/10.1002/mds.27406Mancini, C., & Mirabella, G. (2021). Handedness does not impact inhibitory control, but movement execution and reactive inhibition are more under a left-hemisphere control. Symmetry, 13(9), 1602. https://doi.org/10.3390/sym13091602Mason, D. J., Humphreys, G. W., & Kent, L. S. (2003). Exploring selective attention in ADHD: Visual search through space and time. Journal of Child Psychology and Psychiatry, 44(8), 1158–1176. https://doi.org/10.1111/1469-7610.00204Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43(3), 679–690. https://doi.org/10.3758/s13428-010-0049-5Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450–452. https://doi.org/10.1038/nn1051McAvinue, L. P., Vangkilde, S., Johnson, K. A., Habekost, T., Kyllingsbæk, S., Bundesen, C., & Robertson, I. H. (2015). A componential analysis of visual attention in children with ADHD. Journal of Attention Disorders, 19(10), 882–894. https://doi.org/10.1177/1087054712461935Mirabella, G. (2014). Should I stay or should I go? Conceptual underpinnings of goal-directed actions. Frontiers in Systems Neuroscience, 8(206). https://doi.org/10.3389/fnsys.2014.00206Mirabella, G. (2021). Inhibitory control and impulsive responses in neurodevelopmental disorders. Developmental Medicine & Child Neurology, 63(5), 520–526. https://doi.org/10.1111/dmcn.14778Mirabella, G., & Lebedev, M. A. (2017). Interfacing to the brain’s motor decisions. Journal of Neurophysiology, 117(3), 1305–1319. https://doi.org/10.1152/jn.00051.2016Mirabella, G., Mancini, C., Valente, F., & Cardona, F. (2020). Children with primary complex motor stereotypies show impaired reactive but not proactive inhibition. Cortex, 124, 250–259. https://doi.org/10.1016/j.cortex.2019.12.004Mullane, J. C., Corkum, P. V., Klein, R. M., & McLaughlin, E. (2009). Interference control in children with and without ADHD: A systematic review of flanker and Simon task performance. Child Neuropsychology, 15(4), 321–342. https://doi.org/10.1080/09297040802348028Nigg, J. T. (2001). Is ADHD a disinhibitory disorder? Psychological Bulletin, 127(5), 571–598. https://doi.org/10.1037/0033-2909.127.5.571Notebaert, W., Gevers, W., Verbruggen, F., & Liefooghe, B. (2006). Top-down and bottom-up sequential modulations of congruency effects. Psychonomic Bulletin & Review, 13(1), 112–117. https://doi.org/10.3758/BF03193821Polanczyk, G. V., Salum, G. A., Sugaya, L. S., Caye, A., & Rohde, L. A. (2015). Annual research review: A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. Journal of Child Psychology and Psychiatry, 56(3), 345–365. https://doi.org/10.1111/jcpp.12381Proctor, R. W., Lu, C.-H., Wang, H., & Dutta, A. (1995). Activation of response codes by relevant and irrelevant stimulus information. Acta Psychologica, 90(1-3), 275–286. https://doi.org/10.1016/0001-6918(95)00030-XRamdani, C., Carbonnell, L., Vidal, F., Béranger, C., Dagher, A., & Hasbroucq, T. (2015). Dopamine precursors depletion impairs impulse control in healthy volunteers. Psychopharmacology, 232(2), 477–487. https://doi.org/10.1007/s00213-014-3686-zRatcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86(3), 446–461. https://doi.org/10.1037/0033-2909.86.3.446Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks: Empirical clarification through distributional analyses. In W. Prinz, & B. Hommel (Eds.), Common mechanisms in Perception and action. Attention & performance: Vol. XIX (pp. 494–519). Oxford University Press.Ridderinkhof, K. R., Forstmann, B. U., Wylie, S. A., Burle, B., & van den Wildenberg, W. P. M. (2011). Neurocognitive mechanisms of action control: Resisting the call of the sirens. WIRES Cognitive Science, 2(2), 174–192. https://doi.org/10.1002/wcs.99Ridderinkhof, K. R., Scheres, A., Oosterlaan, J., & Sergeant, J. A. (2005). Delta plots in the study of individual differences: New tools reveal response inhibition deficits in AD/HD that are eliminated by methylphenidate treatment. Journal of Abnormal Psychology, 114(2), 197. https://doi.org/10.1037/0021-843X.114.2.197Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443–447. https://doi.org/10.1126/science.1100301Rubia, K., Cubillo, A., Smith, A. B., Woolley, J., Heyman, I., & Brammer, M. J. (2010). Disorder-specific dysfunction in right inferior prefrontal cortex during two inhibition tasks in boys with attention-deficit hyperactivity disorder compared to boys with obsessive-compulsive disorder. Human Brain Mapping, 31(2), 287–299. https://doi.org/10.1002/hbm.20864Rubia, K., Halari, R., Cubillo, A., Smith, A. B., Mohammad, A. M., Brammer, M., & Taylor, E. (2011). Methylphenidate normalizes fronto-striatal underactivation during interference inhibition in medication-naïve boys with attention-deficit hyperactivity disorder. Neuropsychopharmacology, 36(8), 1575–1586. https://doi.org/10.1038/npp.2011.30Sánchez, C. R., Ramos, C., Díaz, F., & Simón, M. (2010). Validación de la escala de evaluación del trastorno por déficit de atención/hiperactividad (EDAH) en población adolescente. Revista de Neurología, 50(5), 283–290. https://doi.org/10.33588/rn.5005.2009258Schmitt, L. M., White, S. P., Cook, E. H., Sweeney, J. A., & Mosconi, M. W. (2018). Cognitive mechanisms of inhibitory control deficits in autism spectrum disorder. Journal of Child Psychology and Psychiatry, 59(5), 586–595. https://doi.org/10.1111/jcpp.12837Schwartz, K., & Verhaeghen, P. (2008). ADHD and Stroop interference from age 9 to age 41 years: A meta-analysis of developmental effects. Psychological Medicine, 38(11), 1607–1616. https://doi.org/10.1017/S003329170700267XSidlauskaite, J., Dhar, M., Sonuga-Barke, E., & Wiersema, J. R. (2020). Altered proactive control in adults with ADHD: Evidence from event-related potentials during cued task switching. Neuropsychologia, 138, 107330. https://doi.org/10.1016/j.neuropsychologia.2019.107330Simon, J. R. (1969). Reactions toward the source of stimulation. Journal of Experimental Psychology, 81(1), 174–176. https://doi.org/10.1037/h0027448Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor, & T. G. Reeve (Eds.), Stimulus–response compatibility: An integrated perspective (pp. 31–86). North-Holland.Sonuga-Barke, E. J. S., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience & Biobehavioral Reviews, 31(7), 977–986. https://doi.org/10.1016/j.neubiorev.2007.02.005Stevens, M., Lammertyn, J., Verbruggen, F., & Vandierendonck, A. (2006). Tscope: A C library for programming cognitive experiments on the MS windows platform. Behavior Research Methods, 38(2), 280–286. https://doi.org/10.3758/BF03192779Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. https://doi.org/10.1037/h0054651Suarez, I., Burle, B., Tobon, C., Pineda, D., Lopera, F., Hasbroucq, T., & Casini, L. (2015). Deciphering interference control in adults with ADHD by using distribution analyses and electromyographic activity. Acta Psychologica, 159, 85–92. https://doi.org/10.1016/j.actpsy.2015.05.010Suarez, I., Vidal, F., Burle, B., & Casini, L. (2015). A dual-task paradigm to study the interference reduction in the Simon task. Experimental Psychology, 32(2), 75–88. https://doi.org/10.1027/1618-3169/a000275Tamm, L., Nakonezny, P. A., & Hughes, C. W. (2012). An open trial of a metacognitive executive function training for young children with ADHD. Journal of Attention Disorders, 18(6), 551–559. https://doi.org/10.1177/1087054712445782Thapar, A., & Cooper, M. (2016). Attention deficit hyperactivity disorder. Lancet (London, England), 387(10024), 1240–1250. https://doi.org/10.1016/S0140-6736(15)00238-XTsal, Y., Shalev, L., & Mevorach, C. (2005). The diversity of attention deficits in ADHD. Journal of Learning Disabilities, 38(2), 142–157. https://doi.org/10.1177/00222194050380020401Van den Wildenberg, W. P. M., Wylie, S. A., Forstmann, B. U., Burle, B., Hasbroucq, T., & Ridderinkhof, K. R. (2010). To head or to heed? Beyond the surface of selective action inhibition: A review. Frontiers in Human Neuroscience, 4(222). https://doi.org/10.3389/fnhum.2010.00222van Hulst, B. M., de Zeeuw, P., Vlaskamp, C., Rijks, Y., Zandbelt, B. B., & Durston, S. (2018). Children with ADHD symptoms show deficits in reactive but not proactive inhibition, irrespective of their formal diagnosis. Psychological Medicine, 48(15), 2515–2521. https://doi.org/10.1017/S0033291718000107Van Hulst, B. M., de Zeeuw, P., Vlaskamp, C., Rijks, Y., Zandbelt, B. B., & Durston, S. (2018). Children with ADHD symptoms show deficits in reactive but not proactive inhibition, irrespective of their formal diagnosis. Psychological Medicine, 48(15), 2515–2521. https://doi.org/10.1017/S0033291718000107Van Mourik, R., Papanikolau, A., Van Gellicum-Bijlhout, J., Van Oostenbruggen, J., Veugelers, D., Post-Uiterweer, A., Sergeant J., & Oosterlaan, J. (2009). Interference control in children with attention deficit/hyperactivity disorder. Journal of Abnormal Child Psychology, 37(2), 293–303. https://doi.org/10.1007/s10802-008-9277-xVan Wouve, N. C., Kanoff, K. E., Claassen, D. O., Spears, C. A., Neimat, J., van den Wildenberg, V. P. M., & Wylie, S. A. (2016). Dissociable effects of dopamine on the initial capture and the reactive inhibition of impulsive actions in Parkinson’s disease. Journal of Cognitive Neuroscience, 28(5), 710–723. https://doi.org/10.1162/jocn_a_00930Vincent, S. B. (1912). The function of the vibrissae in the behavior of the white rat. Animal Behavior Monographs, 1(5), 1–181.Volkow, N. D. (1995). Is Methylphenidate Like Cocaine? Studies on Their Pharmacokinetics and Distribution in the Human Brain. Archives of General Psychiatry, 52(6), 456–563. https://doi.org/10.1001/archpsyc.1995.03950180042006Volkow, N. D. (2002). Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: Results from imaging studies. European Neuropsychopharmacology, 12(6), 557–566. https://doi.org/10.1016/S0924-977X(02)00104-9Volkow, N. D., Wang, G.-J., Fowler, J. S., Logan, J., Gerasimov, M., Maynard, L., Ding, Y.-S., Gatley, S. J., Gifford, A., & Franceschi, D. (2001). Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. The Journal of Neuroscience, 21(23)(9414), RC121.https://doi.org/10.1523/JNEUROSCI.21-23-09414.2001.Wijnen, J. G., & Ridderinkhof, K. R. (2007). Response inhibition in motor and oculomotor conflict tasks: Different mechanisms, different dynamics? Brain and Cognition, 63(3), 260–270. https://doi.org/10.1016/j.bandc.2006.09.003Wilens, T. E. (2003). Drug therapy for adults with attention-deficit Hyperactivity disorder. Drugs, 63(22), 2395–2411. https://doi.org/10.2165/00003495-200363220-00002Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57(11), 1336–1346. https://doi.org/10.1016/j.biopsych.2005.02.006Wöstmann, N. M., Aichert, D. S., Costa, A., Rubia, K., Möller, H. J., & Ettinger, U. (2013). Reliability and plasticity of response inhibition and interference control. Brain and Cognition, 81(1), 82–94. https://doi.org/10.1016/j.bandc.2012.09.010Wylie, S. A., Claassen, D. O., Huizenga, H. M., Schewel, K. D., Ridderinkhof, K. R., Bashore, T. R., & van den Wildenberg, W. P. M. (2012). Dopamine agonists and the suppression of impulsive motor actions in Parkinson disease. Journal of Cognitive Neuroscience, 24(8), 1709–1724. https://doi.org/10.1162/jocn_a_00241Wylie, S. A., Claassen, D. O., Kanoff, K., Ridderinkhof, K. R., & van den Wildenberg, W. P. M. (2013). Impaired inhibition of prepotent motor actions in patients with tourette syndrome. Journal of Psychiatry & Neuroscience, 38(5), 349–356. https://doi.org/10.1503/jpn.120138Wylie, S. A., Ridderinkhof, K. R., Bashore, T. R., & van den Wildenberg, W. P. M. (2010). The effect of Parkinson’s disease on the dynamics of On-line and proactive cognitive control during action selection. Journal of Cognitive Neuroscience, 22(9), 2058–2073. https://doi.org/10.1162/jocn.2009.21326Wylie, S. A., Ridderinkhof, K. R., Eckerle, M. K., & Manning, C. A. (2007). Inefficient response inhibition in individuals with mild cognitive impairment. Neuropsychologia, 45(7), 1408–1419. https://doi.org/10.1016/j.neuropsychologia.2006.11.003Wylie, S.A., Ridderinkhof, K.R., Elias, W.J., Frysinger, R.C., Bashore, T.R., Downs, K.E., van Wouwe, N.C. and van den Wildenberg, W.P. (2010a). Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson’s disease. Brain, 133(12), 3611–3624. https://doi.org/10.1093/brain/awq239Wylie, S. A., van den Wildenberg, W. P. M., Ridderinkhof, K. R., Bashore, T. R., Powell, V. D., Manning, C. A., & Wooten, G. F. (2009). The effect of Parkinson’s disease on interference control during action selection. Neuropsychologia, 47(1), 145–157. https://doi.org/10.1016/j.neuropsychologia.2008.08.001Xu, G., Strathearn, L., Liu, B., Yang, B., & Bao, W. (2018). Twenty-year trends in diagnosed attention-deficit/hyperactivity disorder among US children and adolescents, 1997-2016. JAMA Network Open, 1(4), e181471–e181471. https://doi.org/10.1001/jamanetworkopen.2018.1471Zamorano, F., Kausel, L., Albornoz, C., Lavin, C., Figueroa-Vargas, A., Stecher, X., Aragón-Caqueo, D., Carrasco, X., Aboitiz, F., & Billeke, P. (2020). Lateral prefrontal theta oscillations reflect proactive cognitive control impairment in males with attention deficit hyperactivity disorder. Frontiers in Systems Neuroscience, 14, 37. https://doi.org/10.3389/fnsys.2020.00037363349538Children with ADHDCongruency sequence effectProactive inhibitionReactive inhibitionSimon taskPublicationORIGINALTwo sides of the same coin ADHD affects reactive.pdfTwo sides of the same coin ADHD affects reactive.pdfapplication/pdf2234979https://repositorio.cuc.edu.co/bitstreams/30dac9da-6a26-4b84-8813-617303cbbc8f/download226d2c4e293035a2154bb2cb62b3abacMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8ac52a78-0a79-4c78-acd3-474cc4891c8f/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTTwo sides of the same coin ADHD affects reactive.pdf.txtTwo sides of the same coin ADHD affects reactive.pdf.txttext/plain71148https://repositorio.cuc.edu.co/bitstreams/46117c21-46b0-4342-9cf2-9609807f5fb7/downloadcc7d7a868bbf9a395317272640145cbbMD53THUMBNAILTwo sides of the same coin ADHD affects reactive.pdf.jpgTwo sides of the same coin ADHD affects reactive.pdf.jpgimage/jpeg17025https://repositorio.cuc.edu.co/bitstreams/904c9035-87d0-481a-b7fc-748224e965bf/downloadfacf29877139edab19ce84e6c094511cMD5411323/9203oai:repositorio.cuc.edu.co:11323/92032024-09-17 14:07:14.985https://creativecommons.org/licenses/by-nc/4.0/© 2022 Informa UK Limited, trading as Taylor & Francis Groupopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |