Monte Carlo dropout for uncertainty estimation and motor imagery classification
Motor Imagery (MI)-based Brain–Computer Interfaces (BCIs) have been widely used as an alternative communication channel to patients with severe motor disabilities, achieving high classification accuracy through machine learning techniques. Recently, deep learning techniques have spotlighted the stat...
- Autores:
-
milanés hermosilla, daily
Trujillo Codorniú, Rafael
López-Baracaldo, René
Sagaro Zamora, Roberto
Delisle-Rodriguez, Denis
Villarejo Mayor, John Jairo
Núñez Alvarez, José Ricardo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8928
- Acceso en línea:
- https://hdl.handle.net/11323/8928
https://doi.org/10.3390/s21217241
https://repositorio.cuc.edu.co/
- Palabra clave:
- Brain–computer interfaces
Monte Carlo dropout
Motor imagery
Shallow convolutional neural network
Uncertainty estimation
- Rights
- openAccess
- License
- CC0 1.0 Universal