A time-series forecasting performance comparison for neural networks with state space and ARIMA models

This research focuses on the development of an automated forecasting procedure that implement State Space (SS), Auto Regressive Integrated Moving Average (ARIMA), and Neural Networks (NN) to identify the best forecasting strategy for time series with numerous patterns. The proposed approach is appli...

Full description

Autores:
Soto-Ferrari, Milton
Chams-Anturi, Odette
Escorcia-Caballero, Juan P.
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7635
Acceso en línea:
https://hdl.handle.net/11323/7635
https://repositorio.cuc.edu.co/
Palabra clave:
Forecasting
State space
ARIMA
Neural networks
Rights
openAccess
License
© IEOM Society International
id RCUC2_92b31fda5d151e7d22a65bb7f35ff9ff
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7635
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv A time-series forecasting performance comparison for neural networks with state space and ARIMA models
title A time-series forecasting performance comparison for neural networks with state space and ARIMA models
spellingShingle A time-series forecasting performance comparison for neural networks with state space and ARIMA models
Forecasting
State space
ARIMA
Neural networks
title_short A time-series forecasting performance comparison for neural networks with state space and ARIMA models
title_full A time-series forecasting performance comparison for neural networks with state space and ARIMA models
title_fullStr A time-series forecasting performance comparison for neural networks with state space and ARIMA models
title_full_unstemmed A time-series forecasting performance comparison for neural networks with state space and ARIMA models
title_sort A time-series forecasting performance comparison for neural networks with state space and ARIMA models
dc.creator.fl_str_mv Soto-Ferrari, Milton
Chams-Anturi, Odette
Escorcia-Caballero, Juan P.
dc.contributor.author.spa.fl_str_mv Soto-Ferrari, Milton
Chams-Anturi, Odette
Escorcia-Caballero, Juan P.
dc.subject.proposal.eng.fl_str_mv Forecasting
State space
ARIMA
Neural networks
topic Forecasting
State space
ARIMA
Neural networks
description This research focuses on the development of an automated forecasting procedure that implement State Space (SS), Auto Regressive Integrated Moving Average (ARIMA), and Neural Networks (NN) to identify the best forecasting strategy for time series with numerous patterns. The proposed approach is applied on multiple time series exhibiting different series patterns from the M4 competition. Based on our study, the performance of ARIMA models showed superior results when compared to the ETS performance for seasonal data. In addition, NN and ARIMA showed a higher performance for cyclical and non-stationary data. NN performance was competitive in all types of data patterns. ARIMA stepwise selection procedure proved to be the most accurate in general for all the series. This delimited development is part of a comprehensive application that will encompass a dashboard tool designed to automatize forecasting procedures of different types of time series presented in the industry Keywords
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-26T16:22:36Z
dc.date.available.none.fl_str_mv 2020-12-26T16:22:36Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7635
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7635
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Conference: International Conference on Industrial Engineering and Operations Management
dc.relation.references.spa.fl_str_mv Brown, R. (1959), “Statistical forecasting for inventory control”, New York: McGraw Hill.
Han, J., Pei, J. and Kamber, M. (2011), “Data mining: Concepts and techniques”, Elsevier.
Holt, C. (1957), “Forecasting trends and seasonal by exponentially weighted averages”, International Journal of Forecasting, Vol. 20 No. 1, pp. 5–13.
Hyndman, R. and Athanasopoulos, G. (2018), “Forecasting: Principles and practice”, OTexts. (Hydmand Book).
Hyndman, R. and Khandakar, Y. (2007), “Automatic time series for forecasting: The forecast package for R”, Clayton VIC, Australia: Monash University, Department of Econometrics and Business Statistics., Vol. 6/7.
Hyndman, R., Koehler, A., Ord, J. and Snyder, R. (2008), “Forecasting with exponential smoothing: The state space approach”, Springer Science & Business Media.
Hyndman, R., Koehler, A., Snyder, R. and Grose, S. (2002), “A state space framework for automatic forecasting using exponential smoothing methods”, International Journal of Forecasting, Vol. 18 No. 3, pp. 439–454.
Makridakis, S., Wheelwright, S. and Hyndman, R. (1998), “Forecasting: Methods and applications”, 3rd Ed, John Wiley & Sons, New York.
Mentzer, J. and Bienstock, C. (1998), “Sales forecasting management: Understanding the techniques”, Systems and Management of the Sales Forecasting Process. Sage Publications,ThousandOaks,CA.
MOFC. (2018), “M4 Competition”, available at: https://mofc.unic.ac.cy/m4/ (accessed 25 July 2020).
Ramos, P., Santos, N. and Rebelo, R. (2015), “Performance of state space and ARIMA models for consumer retail sales forecasting”, Robotics and Computer-Integrated Manufacturing, Vol. 34, pp. 151–163.
Seifert, M., Siemsen, E., Hadida, A. and Eisingerich, A. (2015), “Effective judgmental forecasting in the context of fashion products”, Journal of Operations Management, Vol. 36 No. 1, pp. 33–45.
Series, B.G.J.G.T. (1970), “Analysis: Forecasting and control”, San Francisco: Holden Day Press.
Soto-Ferrari, M., Chams-Anturi, O., Escorcia-Caballero, J.P., Hussain, N. and Khan, M. (2019), “Evaluation of bottom-up and top-down strategies for aggregated forecasts: State space models and arima applications”, In International Conference on Computational Logistics. Springer, Cham, pp. 413–427.
Widiarta, H., Viswanathan, S. and Piplani, R. (2008), “Forecasting item-level demands: An analytical evaluation of top–down versus bottom–up forecasting in a production-planning framework”, Journal of Management Mathematics, Vol. 19 No. 2, pp. 207–218.
Winters, P. (1960), “Forecasting sales by exponentially weighted moving averages”, Management Science, Vol. 6, pp. 324–342.
dc.relation.citationendpage.spa.fl_str_mv 164
dc.relation.citationstartpage.spa.fl_str_mv 155
dc.rights.spa.fl_str_mv © IEOM Society International
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv © IEOM Society International
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEOM Society International
dc.publisher.place.spa.fl_str_mv United States
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.researchgate.net/publication/345914831_A_Time-Series_Forecasting_Performance_Comparison_for_Neural_Networks_with_State_Space_and_ARIMA_Models
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/7a7f130a-6fa0-4add-917d-d0a1f18ad02b/download
https://repositorio.cuc.edu.co/bitstreams/ceaef5a0-3a16-417e-aa09-01cfe2d3e78c/download
https://repositorio.cuc.edu.co/bitstreams/20121928-fd0d-446c-816d-77e562eab2d5/download
https://repositorio.cuc.edu.co/bitstreams/8ca30012-b74a-408c-bd00-ffa6e8a43308/download
https://repositorio.cuc.edu.co/bitstreams/e267b6df-fe9b-4a98-b0c9-5c9f001414a8/download
https://repositorio.cuc.edu.co/bitstreams/3efe8590-e374-4afe-b556-ebef5a2c37c9/download
https://repositorio.cuc.edu.co/bitstreams/e432adc9-e173-4498-b2eb-abb13c910550/download
bitstream.checksum.fl_str_mv e30e9215131d99561d40d6b0abbe9bad
42fd4ad1e89814f5e4a476b409eb708c
b532755c68e0c2316434382902acf2c0
ab9f54e4a9ed46ae20a43ad2fef2ddcf
f3838b79586aaaf21431b040fe080026
4454319fa25b727c3d03c021b7fbbb95
a07643834ab7a48ef179fdfe5502ce43
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760839358676992
spelling Soto-Ferrari, MiltonChams-Anturi, OdetteEscorcia-Caballero, Juan P.2020-12-26T16:22:36Z2020-12-26T16:22:36Z2020https://hdl.handle.net/11323/7635Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This research focuses on the development of an automated forecasting procedure that implement State Space (SS), Auto Regressive Integrated Moving Average (ARIMA), and Neural Networks (NN) to identify the best forecasting strategy for time series with numerous patterns. The proposed approach is applied on multiple time series exhibiting different series patterns from the M4 competition. Based on our study, the performance of ARIMA models showed superior results when compared to the ETS performance for seasonal data. In addition, NN and ARIMA showed a higher performance for cyclical and non-stationary data. NN performance was competitive in all types of data patterns. ARIMA stepwise selection procedure proved to be the most accurate in general for all the series. This delimited development is part of a comprehensive application that will encompass a dashboard tool designed to automatize forecasting procedures of different types of time series presented in the industry KeywordsSoto-Ferrari, Milton-will be generated-orcid-0000-0002-0255-968X-600Chams-Anturi, Odette-will be generated-orcid-0000-0002-8353-7326-600Escorcia-Caballero, Juan P.-will be generated-orcid-0000-0001-8425-0266-60010 páginasapplication/pdfengIEOM Society InternationalUnited States© IEOM Society InternationalAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A time-series forecasting performance comparison for neural networks with state space and ARIMA modelsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.researchgate.net/publication/345914831_A_Time-Series_Forecasting_Performance_Comparison_for_Neural_Networks_with_State_Space_and_ARIMA_ModelsConference: International Conference on Industrial Engineering and Operations ManagementBrown, R. (1959), “Statistical forecasting for inventory control”, New York: McGraw Hill.Han, J., Pei, J. and Kamber, M. (2011), “Data mining: Concepts and techniques”, Elsevier.Holt, C. (1957), “Forecasting trends and seasonal by exponentially weighted averages”, International Journal of Forecasting, Vol. 20 No. 1, pp. 5–13.Hyndman, R. and Athanasopoulos, G. (2018), “Forecasting: Principles and practice”, OTexts. (Hydmand Book).Hyndman, R. and Khandakar, Y. (2007), “Automatic time series for forecasting: The forecast package for R”, Clayton VIC, Australia: Monash University, Department of Econometrics and Business Statistics., Vol. 6/7.Hyndman, R., Koehler, A., Ord, J. and Snyder, R. (2008), “Forecasting with exponential smoothing: The state space approach”, Springer Science & Business Media.Hyndman, R., Koehler, A., Snyder, R. and Grose, S. (2002), “A state space framework for automatic forecasting using exponential smoothing methods”, International Journal of Forecasting, Vol. 18 No. 3, pp. 439–454.Makridakis, S., Wheelwright, S. and Hyndman, R. (1998), “Forecasting: Methods and applications”, 3rd Ed, John Wiley & Sons, New York.Mentzer, J. and Bienstock, C. (1998), “Sales forecasting management: Understanding the techniques”, Systems and Management of the Sales Forecasting Process. Sage Publications,ThousandOaks,CA.MOFC. (2018), “M4 Competition”, available at: https://mofc.unic.ac.cy/m4/ (accessed 25 July 2020).Ramos, P., Santos, N. and Rebelo, R. (2015), “Performance of state space and ARIMA models for consumer retail sales forecasting”, Robotics and Computer-Integrated Manufacturing, Vol. 34, pp. 151–163.Seifert, M., Siemsen, E., Hadida, A. and Eisingerich, A. (2015), “Effective judgmental forecasting in the context of fashion products”, Journal of Operations Management, Vol. 36 No. 1, pp. 33–45.Series, B.G.J.G.T. (1970), “Analysis: Forecasting and control”, San Francisco: Holden Day Press.Soto-Ferrari, M., Chams-Anturi, O., Escorcia-Caballero, J.P., Hussain, N. and Khan, M. (2019), “Evaluation of bottom-up and top-down strategies for aggregated forecasts: State space models and arima applications”, In International Conference on Computational Logistics. Springer, Cham, pp. 413–427.Widiarta, H., Viswanathan, S. and Piplani, R. (2008), “Forecasting item-level demands: An analytical evaluation of top–down versus bottom–up forecasting in a production-planning framework”, Journal of Management Mathematics, Vol. 19 No. 2, pp. 207–218.Winters, P. (1960), “Forecasting sales by exponentially weighted moving averages”, Management Science, Vol. 6, pp. 324–342.164155ForecastingState spaceARIMANeural networksPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/7a7f130a-6fa0-4add-917d-d0a1f18ad02b/downloade30e9215131d99561d40d6b0abbe9badMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/ceaef5a0-3a16-417e-aa09-01cfe2d3e78c/download42fd4ad1e89814f5e4a476b409eb708cMD52THUMBNAILA Time-Series Forecasting Performance Comparison for Neural Networks with State Space and ARIMA Models.pdf.jpgA Time-Series Forecasting Performance Comparison for Neural Networks with State Space and ARIMA Models.pdf.jpgimage/jpeg46984https://repositorio.cuc.edu.co/bitstreams/20121928-fd0d-446c-816d-77e562eab2d5/downloadb532755c68e0c2316434382902acf2c0MD54A time-series forecasting performance comparison for neural networks with state space and ARIMA models.pdf.jpgA time-series forecasting performance comparison for neural networks with state space and ARIMA models.pdf.jpgimage/jpeg13734https://repositorio.cuc.edu.co/bitstreams/8ca30012-b74a-408c-bd00-ffa6e8a43308/downloadab9f54e4a9ed46ae20a43ad2fef2ddcfMD58TEXTA Time-Series Forecasting Performance Comparison for Neural Networks with State Space and ARIMA Models.pdf.txtA Time-Series Forecasting Performance Comparison for Neural Networks with State Space and ARIMA Models.pdf.txttext/plain1242https://repositorio.cuc.edu.co/bitstreams/e267b6df-fe9b-4a98-b0c9-5c9f001414a8/downloadf3838b79586aaaf21431b040fe080026MD55A time-series forecasting performance comparison for neural networks with state space and ARIMA models.pdf.txtA time-series forecasting performance comparison for neural networks with state space and ARIMA models.pdf.txttext/plain32830https://repositorio.cuc.edu.co/bitstreams/3efe8590-e374-4afe-b556-ebef5a2c37c9/download4454319fa25b727c3d03c021b7fbbb95MD57ORIGINALA time-series forecasting performance comparison for neural networks with state space and ARIMA models.pdfA time-series forecasting performance comparison for neural networks with state space and ARIMA models.pdfapplication/pdf2980136https://repositorio.cuc.edu.co/bitstreams/e432adc9-e173-4498-b2eb-abb13c910550/downloada07643834ab7a48ef179fdfe5502ce43MD5611323/7635oai:repositorio.cuc.edu.co:11323/76352024-09-17 14:08:43.275https://creativecommons.org/licenses/by/4.0/© IEOM Society Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==