A time-series forecasting performance comparison for neural networks with state space and ARIMA models
This research focuses on the development of an automated forecasting procedure that implement State Space (SS), Auto Regressive Integrated Moving Average (ARIMA), and Neural Networks (NN) to identify the best forecasting strategy for time series with numerous patterns. The proposed approach is appli...
- Autores:
-
Soto-Ferrari, Milton
Chams-Anturi, Odette
Escorcia-Caballero, Juan P.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7635
- Acceso en línea:
- https://hdl.handle.net/11323/7635
https://repositorio.cuc.edu.co/
- Palabra clave:
- Forecasting
State space
ARIMA
Neural networks
- Rights
- openAccess
- License
- © IEOM Society International