Factors that determine advertising evasion in social networks

The present work is framed within the study of advertising evasion online and particularly in social networks. Social networks are a growing phenomenon, where users spend most of their time online and where companies are moving part of their advertising investment, as they are considered an ideal pl...

Full description

Autores:
Silva, Jesús
Pinillos-Patiño, Yisel
Sukier, Harold
Vargas, Jesús
Corrales, Patricio
Pineda Lezama, Omar Bonerge
Quintero, Benjamín
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7703
Acceso en línea:
https://hdl.handle.net/11323/7703
https://doi.org/10.1007/978-981-15-7234-0_81
https://repositorio.cuc.edu.co/
Palabra clave:
Perceived control
Intrusion
Reactance
Advertising evasion
Social networks
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_90871642c8f59ecda6d8efae0b28f8e2
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7703
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Factors that determine advertising evasion in social networks
title Factors that determine advertising evasion in social networks
spellingShingle Factors that determine advertising evasion in social networks
Perceived control
Intrusion
Reactance
Advertising evasion
Social networks
title_short Factors that determine advertising evasion in social networks
title_full Factors that determine advertising evasion in social networks
title_fullStr Factors that determine advertising evasion in social networks
title_full_unstemmed Factors that determine advertising evasion in social networks
title_sort Factors that determine advertising evasion in social networks
dc.creator.fl_str_mv Silva, Jesús
Pinillos-Patiño, Yisel
Sukier, Harold
Vargas, Jesús
Corrales, Patricio
Pineda Lezama, Omar Bonerge
Quintero, Benjamín
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Pinillos-Patiño, Yisel
Sukier, Harold
Vargas, Jesús
Corrales, Patricio
Pineda Lezama, Omar Bonerge
Quintero, Benjamín
dc.subject.spa.fl_str_mv Perceived control
Intrusion
Reactance
Advertising evasion
Social networks
topic Perceived control
Intrusion
Reactance
Advertising evasion
Social networks
description The present work is framed within the study of advertising evasion online and particularly in social networks. Social networks are a growing phenomenon, where users spend most of their time online and where companies are moving part of their advertising investment, as they are considered an ideal place for commercial campaigns. In order to deepen in the variables that precede advertising evasion in social networks, a relationship model was developed based on the theoretical framework of advertising evasion on the Internet, which was contrasted at an empirical level through a panel of users. For this purpose, a structural equation model was designed, which highlighted the relationships between the main antecedent variables of evasion, such as perceived control, advertising intrusion, and psychological reaction.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-01-15T21:46:25Z
dc.date.available.none.fl_str_mv 2021-01-15T21:46:25Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7703
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-7234-0_81
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7703
https://doi.org/10.1007/978-981-15-7234-0_81
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Magazine 17(3):37–54
2. Witten I, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann Publishers
3. WEKA 3 (2016) Data mining software in Java homepage.
4. Singh Y, Chanuhan A (2009) Neural networks in data mining. J Theor Appl Inf Technol 5(1):37–42
5. Orallo J, Ramírez M, Ferri C (2008) Introducción a la Minería de Datos. Pearson Education
6. Aladag C, Hocaoglu G (2007) A tabu search algorithm to solve a course timetabling problem. Hacettepe J Math Stat 53–64
7. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards Memetic algorithms. Caltech Concurrent Computation Program (report 826) (1989)
8. Frausto-Solís J, Alonso-Pecina F, Mora-Vargas J (2008) An efficient simulated annealing algorithm for feasible solutions of course timetabling. Springer, pp 675–685
9. Joudaki M, Imani M, Mazhari N (2010) Using improved Memetic algorithm and local search to solve University Course Timetabling Problem (UCTTP). Islamic Azad University, Doroud, Iran
10. Coopers PWH (2014) IAB internet advertising revenue report.
11. Tuzhilin A (2006) The lane’s gifts v. Google report. Official Google Blog: Findings on invalid clicks, pp 1–47
12. Ponce H, Ponce P, Molina A (2014) Artificial organic networks: artificial intelligence based on carbon networks. In: Studies in computational intelligence, vol 521. Springer
13. Ponce H, Ponce P, Molina A (2013) A new training algorithm for artificial hydrocarbon networks using an energy model of covalent bonds. In: 7th IFAC conference on manufacturing modelling, management, and control, vol 7, issue 1, pp 602–608
14. Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham
15. Moe WW (2013) Targeting display advertising. Advanced database marketing: Innovative methodologies & applications for managing customer relationships. Gower Publishing, Londres
16. Granitto PM, Furlanello C, Biasioli F, Gasperi F (2006) Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometr Intell Lab Syst 83(2):83–90
17. Kuhn W, Wing J, Weston S, Williams A, Keefer C et al (2012) Caret: classification and regression training. R package, v515
18. Miller B, Pearce P, Grier C, Kreibich C, Paxson V (2011) What’s clicking what? Techniques and innovations of today’s clickbots. In: Detection of intrusions and malware, and vulnerability assessment. Springer, pp 164–183
19. Kamatkar SJ, Tayade A, Viloria A, Hernández-Chacín A (2018) Application of classification technique of data mining for employee management system. In: International conference on data mining and big data. Springer, Cham, pp 434–444
20. Kamatkar SJ, Kamble A, Viloria A, Hernández-Fernandez L, Cali EG (2018) Database performance tuning and query optimization. In: International conference on data mining and big data. Springer, Cham, pp 3–11
21. Ellison NB, Steinfield C, Lampe C (2007) The benefits of Facebook “Friends:” Social capital and college students’ use of online social network sites. J Comput Med Commun 12(4):1143–1168
22. Silva J, Hernández-Fernández L, Cuadrado ET, Mercado-Caruso N, Espinosa CR, Ortega FA, Hernández H, Delgado GJ (2019) Factors affecting the big data adoption as a marketing tool in SMEs. In: International conference on data mining and big data. Springer, Singapore, pp 34–43
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Intelligent Systems and Computing
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-7234-0_81
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/8491b8dc-a878-49dc-b48c-6e6c847e250c/download
https://repositorio.cuc.edu.co/bitstreams/28c5b297-1c11-474f-bca3-b05330a90919/download
https://repositorio.cuc.edu.co/bitstreams/60545530-8839-4886-a750-7a757b75906d/download
https://repositorio.cuc.edu.co/bitstreams/2570d94e-76c5-44cd-9f3b-c59831a8261e/download
https://repositorio.cuc.edu.co/bitstreams/775cb7c7-87a2-45e9-9775-7865abe0dc64/download
bitstream.checksum.fl_str_mv 3e4ba6ee394e2ce54003eb27c89c690b
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
31da34c51c8f4f63e50e4e83d4e86156
883d66677bfd0a32ead5b15362b3d66e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760731404632064
spelling Silva, JesúsPinillos-Patiño, YiselSukier, HaroldVargas, JesúsCorrales, PatricioPineda Lezama, Omar BonergeQuintero, Benjamín2021-01-15T21:46:25Z2021-01-15T21:46:25Z2021https://hdl.handle.net/11323/7703https://doi.org/10.1007/978-981-15-7234-0_81Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present work is framed within the study of advertising evasion online and particularly in social networks. Social networks are a growing phenomenon, where users spend most of their time online and where companies are moving part of their advertising investment, as they are considered an ideal place for commercial campaigns. In order to deepen in the variables that precede advertising evasion in social networks, a relationship model was developed based on the theoretical framework of advertising evasion on the Internet, which was contrasted at an empirical level through a panel of users. For this purpose, a structural equation model was designed, which highlighted the relationships between the main antecedent variables of evasion, such as perceived control, advertising intrusion, and psychological reaction.Silva, JesúsPinillos-Patiño, YiselSukier, HaroldVargas, JesúsCorrales, PatricioPineda Lezama, Omar BonergeQuintero, Benjamínapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Advances in Intelligent Systems and Computinghttps://link.springer.com/chapter/10.1007/978-981-15-7234-0_81Perceived controlIntrusionReactanceAdvertising evasionSocial networksFactors that determine advertising evasion in social networksArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Magazine 17(3):37–542. Witten I, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann Publishers3. WEKA 3 (2016) Data mining software in Java homepage.4. Singh Y, Chanuhan A (2009) Neural networks in data mining. J Theor Appl Inf Technol 5(1):37–425. Orallo J, Ramírez M, Ferri C (2008) Introducción a la Minería de Datos. Pearson Education6. Aladag C, Hocaoglu G (2007) A tabu search algorithm to solve a course timetabling problem. Hacettepe J Math Stat 53–647. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards Memetic algorithms. Caltech Concurrent Computation Program (report 826) (1989)8. Frausto-Solís J, Alonso-Pecina F, Mora-Vargas J (2008) An efficient simulated annealing algorithm for feasible solutions of course timetabling. Springer, pp 675–6859. Joudaki M, Imani M, Mazhari N (2010) Using improved Memetic algorithm and local search to solve University Course Timetabling Problem (UCTTP). Islamic Azad University, Doroud, Iran10. Coopers PWH (2014) IAB internet advertising revenue report.11. Tuzhilin A (2006) The lane’s gifts v. Google report. Official Google Blog: Findings on invalid clicks, pp 1–4712. Ponce H, Ponce P, Molina A (2014) Artificial organic networks: artificial intelligence based on carbon networks. In: Studies in computational intelligence, vol 521. Springer13. Ponce H, Ponce P, Molina A (2013) A new training algorithm for artificial hydrocarbon networks using an energy model of covalent bonds. In: 7th IFAC conference on manufacturing modelling, management, and control, vol 7, issue 1, pp 602–60814. Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham15. Moe WW (2013) Targeting display advertising. Advanced database marketing: Innovative methodologies & applications for managing customer relationships. Gower Publishing, Londres16. Granitto PM, Furlanello C, Biasioli F, Gasperi F (2006) Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometr Intell Lab Syst 83(2):83–9017. Kuhn W, Wing J, Weston S, Williams A, Keefer C et al (2012) Caret: classification and regression training. R package, v51518. Miller B, Pearce P, Grier C, Kreibich C, Paxson V (2011) What’s clicking what? Techniques and innovations of today’s clickbots. In: Detection of intrusions and malware, and vulnerability assessment. Springer, pp 164–18319. Kamatkar SJ, Tayade A, Viloria A, Hernández-Chacín A (2018) Application of classification technique of data mining for employee management system. In: International conference on data mining and big data. Springer, Cham, pp 434–44420. Kamatkar SJ, Kamble A, Viloria A, Hernández-Fernandez L, Cali EG (2018) Database performance tuning and query optimization. In: International conference on data mining and big data. Springer, Cham, pp 3–1121. Ellison NB, Steinfield C, Lampe C (2007) The benefits of Facebook “Friends:” Social capital and college students’ use of online social network sites. J Comput Med Commun 12(4):1143–116822. Silva J, Hernández-Fernández L, Cuadrado ET, Mercado-Caruso N, Espinosa CR, Ortega FA, Hernández H, Delgado GJ (2019) Factors affecting the big data adoption as a marketing tool in SMEs. In: International conference on data mining and big data. Springer, Singapore, pp 34–43PublicationORIGINALFactors that Determine Advertising Evasion in Social Networks.pdfFactors that Determine Advertising Evasion in Social Networks.pdfapplication/pdf92729https://repositorio.cuc.edu.co/bitstreams/8491b8dc-a878-49dc-b48c-6e6c847e250c/download3e4ba6ee394e2ce54003eb27c89c690bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/28c5b297-1c11-474f-bca3-b05330a90919/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/60545530-8839-4886-a750-7a757b75906d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILFactors that Determine Advertising Evasion in Social Networks.pdf.jpgFactors that Determine Advertising Evasion in Social Networks.pdf.jpgimage/jpeg30433https://repositorio.cuc.edu.co/bitstreams/2570d94e-76c5-44cd-9f3b-c59831a8261e/download31da34c51c8f4f63e50e4e83d4e86156MD54TEXTFactors that Determine Advertising Evasion in Social Networks.pdf.txtFactors that Determine Advertising Evasion in Social Networks.pdf.txttext/plain1152https://repositorio.cuc.edu.co/bitstreams/775cb7c7-87a2-45e9-9775-7865abe0dc64/download883d66677bfd0a32ead5b15362b3d66eMD5511323/7703oai:repositorio.cuc.edu.co:11323/77032024-09-17 10:51:49.459http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==