Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst

Traditionally, enzymatic synthesis of nucleoside-5′-monophosphates (5′-NMPs) using low water-soluble purine bases has been described as less efficient due to their low solubility in aqueous media. The use of enzymes from extremophiles, such as thermophiles or alkaliphiles, offers the potential to in...

Full description

Autores:
Del Arco, Jon
Cejudo Sanches, J.
Esteban, I
Clemente Suárez, Vicente Javier
Hormigo, Daniel
Perona, Almudena
Fernandez Lucas, Jesus
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/943
Acceso en línea:
https://hdl.handle.net/11323/943
https://repositorio.cuc.edu.co/
Palabra clave:
Enzymatic synthesis
Food industry
6-Oxopurine phosphoribosyltransferases
Thermophiles
Alkaliphiles
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_8d8f257138fe1f7bc17dbe280ecb1d9a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/943
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst
title Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst
spellingShingle Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst
Enzymatic synthesis
Food industry
6-Oxopurine phosphoribosyltransferases
Thermophiles
Alkaliphiles
title_short Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst
title_full Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst
title_fullStr Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst
title_full_unstemmed Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst
title_sort Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst
dc.creator.fl_str_mv Del Arco, Jon
Cejudo Sanches, J.
Esteban, I
Clemente Suárez, Vicente Javier
Hormigo, Daniel
Perona, Almudena
Fernandez Lucas, Jesus
dc.contributor.author.spa.fl_str_mv Del Arco, Jon
Cejudo Sanches, J.
Esteban, I
Clemente Suárez, Vicente Javier
Hormigo, Daniel
Perona, Almudena
Fernandez Lucas, Jesus
dc.subject.eng.fl_str_mv Enzymatic synthesis
Food industry
6-Oxopurine phosphoribosyltransferases
Thermophiles
Alkaliphiles
topic Enzymatic synthesis
Food industry
6-Oxopurine phosphoribosyltransferases
Thermophiles
Alkaliphiles
description Traditionally, enzymatic synthesis of nucleoside-5′-monophosphates (5′-NMPs) using low water-soluble purine bases has been described as less efficient due to their low solubility in aqueous media. The use of enzymes from extremophiles, such as thermophiles or alkaliphiles, offers the potential to increase solubilisation of these bases by employing high temperatures or alkaline pH. This study describes the cloning, expression and purification of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Thermus thermophilus (TtHGXPRT). Biochemical characterization indicates TtHGXPRT as a homotetramer with excellent activity and stability across a broad range of temperatures (50–90 °C) and ionic strengths (0–500 mM NaCl), but it also reveals an unusually high activity and stability under alkaline conditions (pH range 8–11). In order to explore the potential of TtHGXPRT as an industrial biocatalyst, enzymatic production of several dietary 5′-NMPs, such as 5′-GMP and 5′-IMP, was carried out at high concentrations of guanine and hypoxanthine.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-03-28
dc.date.accessioned.none.fl_str_mv 2018-11-14T14:12:19Z
dc.date.available.none.fl_str_mv 2018-11-14T14:12:19Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 03088146
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/943
dc.identifier.doi.spa.fl_str_mv DOI: 10.1016/j.foodchem.2017.05.136
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 03088146
DOI: 10.1016/j.foodchem.2017.05.136
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/943
https://repositorio.cuc.edu.co/
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Food Chemistry
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/1ca0742d-4c6a-436e-ab29-556fc91ab885/download
https://repositorio.cuc.edu.co/bitstreams/fd0c4145-fac7-408d-a2b8-cab2c402334c/download
https://repositorio.cuc.edu.co/bitstreams/6664dce0-2243-46c2-8dd8-7755d0de3a65/download
https://repositorio.cuc.edu.co/bitstreams/b5ae1c05-4372-429c-8dad-8c47d6be31e1/download
bitstream.checksum.fl_str_mv 622b12158d03b0f139bb765e929a16aa
8a4605be74aa9ea9d79846c1fba20a33
6eee1d95b5be8c4a729cf0ad4705e333
6cce313a2f08f6e4f270c2cb3c5e1a53
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760826326974464
spelling Del Arco, JonCejudo Sanches, J.Esteban, IClemente Suárez, Vicente JavierHormigo, DanielPerona, AlmudenaFernandez Lucas, Jesus2018-11-14T14:12:19Z2018-11-14T14:12:19Z2017-03-2803088146https://hdl.handle.net/11323/943DOI: 10.1016/j.foodchem.2017.05.136Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Traditionally, enzymatic synthesis of nucleoside-5′-monophosphates (5′-NMPs) using low water-soluble purine bases has been described as less efficient due to their low solubility in aqueous media. The use of enzymes from extremophiles, such as thermophiles or alkaliphiles, offers the potential to increase solubilisation of these bases by employing high temperatures or alkaline pH. This study describes the cloning, expression and purification of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Thermus thermophilus (TtHGXPRT). Biochemical characterization indicates TtHGXPRT as a homotetramer with excellent activity and stability across a broad range of temperatures (50–90 °C) and ionic strengths (0–500 mM NaCl), but it also reveals an unusually high activity and stability under alkaline conditions (pH range 8–11). In order to explore the potential of TtHGXPRT as an industrial biocatalyst, enzymatic production of several dietary 5′-NMPs, such as 5′-GMP and 5′-IMP, was carried out at high concentrations of guanine and hypoxanthine.Del Arco, Jon-c5ed68af-857c-4b28-99a7-33a4254ed926-0Cejudo Sanches, J.-b1269f0a-f52e-4d2e-a7ca-20003e221186-0Esteban, I-417aeaf1-6d09-4d8a-be5f-67e917f1e980-0Clemente Suárez, Vicente Javier-0000-0002-2397-2801-600Hormigo, Daniel-915adee9-292d-4836-8d92-b79ac158d173-0Perona, Almudena-d6388df9-bb67-4ff9-be56-ab05771f1650-0Fernandez Lucas, Jesus-3f36c351-7522-42ea-8605-cd7e804a6387-0Food ChemistryAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Enzymatic synthesisFood industry6-Oxopurine phosphoribosyltransferasesThermophilesAlkaliphilesEnzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalystArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALEnzymatic production of dietary nucleotides from low-soluble.pdfEnzymatic production of dietary nucleotides from low-soluble.pdfapplication/pdf108096https://repositorio.cuc.edu.co/bitstreams/1ca0742d-4c6a-436e-ab29-556fc91ab885/download622b12158d03b0f139bb765e929a16aaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/fd0c4145-fac7-408d-a2b8-cab2c402334c/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILEnzymatic production of dietary nucleotides from low-soluble.pdf.jpgEnzymatic production of dietary nucleotides from low-soluble.pdf.jpgimage/jpeg46041https://repositorio.cuc.edu.co/bitstreams/6664dce0-2243-46c2-8dd8-7755d0de3a65/download6eee1d95b5be8c4a729cf0ad4705e333MD54TEXTEnzymatic production of dietary nucleotides from low-soluble.pdf.txtEnzymatic production of dietary nucleotides from low-soluble.pdf.txttext/plain1468https://repositorio.cuc.edu.co/bitstreams/b5ae1c05-4372-429c-8dad-8c47d6be31e1/download6cce313a2f08f6e4f270c2cb3c5e1a53MD5511323/943oai:repositorio.cuc.edu.co:11323/9432024-09-17 14:06:03.487open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=