Análisis CFD del comportamiento del flujo de aire en el sistema de admisión de un motor diésel de baja cilindrada

Introducción— El análisis del flujo de aire, en Motores de Combustión Interna expone un gran desafío para los investigadores debido al comportamiento que presenta el aire dentro del cilindro, el cual se caracteriza por ser turbulento, inestable, cíclico y no estacionario tanto espacial como temporal...

Full description

Autores:
Santos, Carlos
Perez, Luis
Duarte Forero, Jorge
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12266
Acceso en línea:
https://hdl.handle.net/11323/12266
https://doi.org/10.17981/ingecuc.16.2.2020.23
Palabra clave:
Diesel engines
OpenFOAM
CFD
discharge coefficient
swirl motion
CFD
OpenFOAM
coeficiente de descarga
coeficiente de torbellino
motores Diesel
Rights
openAccess
License
INGE CUC - 2020
id RCUC2_8d3bf826b99219f1032e59a329174041
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12266
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Análisis CFD del comportamiento del flujo de aire en el sistema de admisión de un motor diésel de baja cilindrada
dc.title.translated.eng.fl_str_mv CFD analysis of the airflow behavior in the intake system of a low-displacement diesel engine
title Análisis CFD del comportamiento del flujo de aire en el sistema de admisión de un motor diésel de baja cilindrada
spellingShingle Análisis CFD del comportamiento del flujo de aire en el sistema de admisión de un motor diésel de baja cilindrada
Diesel engines
OpenFOAM
CFD
discharge coefficient
swirl motion
CFD
OpenFOAM
coeficiente de descarga
coeficiente de torbellino
motores Diesel
title_short Análisis CFD del comportamiento del flujo de aire en el sistema de admisión de un motor diésel de baja cilindrada
title_full Análisis CFD del comportamiento del flujo de aire en el sistema de admisión de un motor diésel de baja cilindrada
title_fullStr Análisis CFD del comportamiento del flujo de aire en el sistema de admisión de un motor diésel de baja cilindrada
title_full_unstemmed Análisis CFD del comportamiento del flujo de aire en el sistema de admisión de un motor diésel de baja cilindrada
title_sort Análisis CFD del comportamiento del flujo de aire en el sistema de admisión de un motor diésel de baja cilindrada
dc.creator.fl_str_mv Santos, Carlos
Perez, Luis
Duarte Forero, Jorge
dc.contributor.author.spa.fl_str_mv Santos, Carlos
Perez, Luis
Duarte Forero, Jorge
dc.subject.eng.fl_str_mv Diesel engines
OpenFOAM
CFD
discharge coefficient
swirl motion
topic Diesel engines
OpenFOAM
CFD
discharge coefficient
swirl motion
CFD
OpenFOAM
coeficiente de descarga
coeficiente de torbellino
motores Diesel
dc.subject.spa.fl_str_mv CFD
OpenFOAM
coeficiente de descarga
coeficiente de torbellino
motores Diesel
description Introducción— El análisis del flujo de aire, en Motores de Combustión Interna expone un gran desafío para los investigadores debido al comportamiento que presenta el aire dentro del cilindro, el cual se caracteriza por ser turbulento, inestable, cíclico y no estacionario tanto espacial como temporalmente. El presente estudio propone implementar de un modelo de turbulencia a través de un análisis de Dinámica de Fluidos Computacional (CFD) que permita simplificar el fenómeno para motores de baja cilindrada y describa los parámetros que repercuten en la eficiencia y emisiones del motor. Objetivos— El presente estudio busca analizar el comportamiento del flujo de aire en el sistema de admisión de un motor Diésel de baja cilindrada con aspiración natural a través de un modelo experimental ajustado mediante un modelado CFD. Metodología— Se realizó el análisis del comportamiento del flujo de aire en el sistema de admisión del motor con un modelo experimental que obtiene las características del flujo. Este modelo es ajustado mediante herramientas CFD en OPENFOAM®, que permitirá obtener el Coeficiente de Descarga (CD) y el Coeficiente de Torbellino (CT) para describir el comportamiento aerodinámico del sistema de admisión. Resultados— Para el CD, los valores oscilan entre 0 L/D y 0.5 L/D indicando que este motor es capaz de trasegar un 50% de aire de la capacidad teórica con una válvula de 30.5 mm de diámetro y una cámara de 0.3 L de volumen. En cuanto al CT, para un área de referencia variable, los valores oscilan entre 0.19 L/D y 0.3 L/D, por lo que el motor solo disminuiría un 11% su capacidad de trasegar flujo de aire de la capacidad ideal, si el flujo másico teórico va en aumento para cada levantamiento. Conclusiones— Se puede concluir que para 3000 rpm y 3400 rpm se produce un vórtice definido bajo la metodología propuesta, obteniendo valores de velocidad muy cercanos a 10 m/s y 20 m/s en la periferia, que aseguran el flujo de aire con vorticidad en el cilindro. A 3400 rpm el CT se eleva con respecto a los demás regímenes en los últimos levantamientos de válvula. Concluyendo así, que bajo este régimen de giro se da el punto óptimo de generación de vorticidad para el motor que permite reducir las emisiones e incrementar le eficiencia global.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-30 00:00:00
2024-04-09T20:17:47Z
dc.date.available.none.fl_str_mv 2020-04-30 00:00:00
2024-04-09T20:17:47Z
dc.date.issued.none.fl_str_mv 2020-04-30
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12266
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.16.2.2020.23
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.16.2.2020.23
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.16.2.2020.23
2382-4700
url https://hdl.handle.net/11323/12266
https://doi.org/10.17981/ingecuc.16.2.2020.23
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv  Y. Varola, H. F. Oztop, M. Firata & A. Kocab, “CFD Modeling of heat transfer and fluid flow inside a pent-roof type combustion,” Int Commun Heat Mass, vol. 37, no. 9, pp. 1366–1375, Nov. 2010. https://doi.org/10.1016/j.icheatmasstransfer.2010.07.003
 S. Jiang, S. Zhu, H. Wen & S. Huang, “Parameter analysis of diesel helical intake port numerical desing,” Energy Procedia, vol. 16, Part A, pp. 558–563, 2012. https://doi.org/10.1016/j.egypro.2012.01.090
 B. Jayashankara & V. Ganesan, “Effect of fuel injection timing and intake pressure on the performance of DI diesel Engine - A parametric study using CFD,” Energy Convers Manag, vol. 51, no. 10, pp. 1835–1848, 2009. http://dx.doi.org/10.1016/j.enconman.2009.11.006
 G. Kalghatgi, “Developments in internal combustion engines and implications for combustion science and future transport fuels,” Proc Combust Inst, vol. 35, no. 1, pp. 101–115, 2014. https://doi.org/10.1016/j.proci.2014.10.002
 A. Gil, Modelado tridimensional del flujo de aire en el cilindro de motores diesel de inyeccion directa. VA, ES: Reverte, 2007.
 J. S. Meurer, “Die Erzeugung von Drehbewegungen der Luft in den Zylindern schnellaufender Viertakt-Dieselmaschinen durch die Einlaßorgane,” MAN-Forsch, n. 1, s. 8–22, 1951.
 G. Thien, “Entwicklungsarbeiten an ventilkanälen on viertakt Diesel Motoren,” ÖIZ, vol. 8, n. 9, 1965.
 T. Uzkan, C. Borgnakke & T. Morel, “Characterization of Flow produced by a high-swirl inlet port,” IHC, AA, MI, USA, SAE Technical Papers 830266, 1983. https://doi.org/10.4271/830266
 J. Morea-Roy, M. Muñoz & F. Moreno, “Simulación numerica del ciclo operativo de un motor de encendido provocado,” Rev inter met num calc dis ing, vol. 15, no. 2, pp. 207–216, 1999. Disponible en http://hdl.handle.net/2099/4567
 A. Rahiman, A. Razak, M. Samee & M. K. Ramis, “CFD Analysis of flow field development in a direct injection diesel engine with different manifolds,” Am J Fluid Dyn, vol. 4, no. 3, pp. 102–113, 2014. Available: http://article.sapub.org/10.5923.j.ajfd.20140403.03.html
 R. Holkar, Y. N. Sule-Patil, S. M. Pise, Y. A. Godase & V. Jagadale, “Numerical simulation of steady flow through engine intake system using CFD,” IOSR JMCE, vol. 12, no. 1, pp. 30–45, 2015. Available: https://www.iosrjournals.org/
 J. V. Pastor, Movimiento del aire en motores diesel de inyeccion directa, VAL, ES: UPV, 1997.
 G. Thien, “Derivation of the formulas for the evaluation of stationary flow measurements,” ÖIZ, AU, VIE, AVL-FA-Report Nº. 463/Gen./072, 1978.
 G. Thien, “Entwicklungsarbeiten an Ventilkanalen von Viertakt Dieselmotoren,” ÖIZ, vol. 9, 1965.
 J. C. Dent & J. A. Derham, “Air Motion in a Four-Stroke Direct Injection Diesel Engine,” IME, vol. 188, no. 21, pp. 269–280, Jun. 1974. https://doi.org/10.1243%2FPIME_PROC_1974_188_030_02
 G. C. Davis & J. C. Kent, “Comparison of model calculations and experimental measurements of the bulk cylinder flow processes in a motored PROCO engine,” SAE, DET, USA, SAE Technical Paper 790290, 1979. https://doi.org/10.4271/790290
 R. C. Engineers, “Information to clients on Ricardo’s Laser-Doppler velocimeter,” Ricardo Engineering Report, 1976.
 A. Murakami, M. Arai & H. Hiroyasu, “Swirl Measurements and Modelling in Direct Injection Diesel Engines,” Univ Hiroshima, HIJ, JPN, SAE Technical Paper 880385, 1988. https://doi.org/10.4271/880385
 R. Leal & J. L. Filgueiras, “Industrial airflows numerical simulation in ducts and devices using all-speed algorithm in structured meshes,” Ingeniare, vol. 26, no. 2, pp. 273–282, 2008. http://dx.doi.org/10.4067/S0718-33052018000200273
 L. Rodríguez, M. Collado, E. Rodríguez & L. Patiño, “Análisis numérico del comportamiento del aire en un sistema de distribución de aire acondicionado empleando los modelos de turbulencia K-E, RNG K-E y el modelo de las tensiones de Reynolds,” Ingeniare, vol. 16, no. 2, pp. 370–382, 2008. http://dx.doi.org/10.4067/S0718-33052008000200012
 G. P. Blair, H. B. Lau, A. Cartwright, B. D. Raghunathan & D. O. Mackey, “Coefficients of Discharge at the Aperatures of Engines,” J Engines, vol. 104, no. 3, pp. 2048–2062, 1995. https://doi.org/10.4271/952138
 J. Derham, “Air Motion in a Four Stroke Direct Injection Diesel Engine,” Doctoral Thesis, LUT, Loughb, ENG, 1971. Available: https://hdl.handle.net/2134/36161
 H. Fujimoto, T. Nakagawa, H. Kudo, T. Wakisaka & Y. Shimamotoc, “A study on the formation of vertical vortex in the cylinder of an I.C engine using CFD: Effect of intake valve closing timing,” JSAE , vol. 16, no. 4, pp. 349–355, 1995. https://doi.org/10.1016/0389-4304(95)00041-5
 J. Benajes, X. Margot, J. Pastor & A. Gil, “Three dimensional calculation of the flow in a DI Diesel engine with variable swirl PORTS,” ATTCE, BCN, ES, SAE Technical Paper 2001-01-3230, 2001. https://doi.org/10.4271/2001-01-3230
 S. Zirngibl, M. Prager & G. Wachtmeister, “Experimental and Simulative Approaches for the determination of the discharge coefficients for inlet and exhaust valves and ports in internal combustion engines,” presented SAE World Congress Experience, WCX™ 17, DET, USA, 2017. http://dx.doi.org/10.4271/2017-01-5022
 S. F. Wang & B. E. Milton, “Investigation of the Helical Inlet Port,” presented in International Fall Fuels and Lubricants Meeting and Exposition, TIB, TLS, USA, Oct. 13-16, 1997. https://doi.org/10.4271/982539
 G. M. Bianchi, G. Cantore & S. Fontanesi, “Turbulence Modelling in CFD Simulation of ICE Intake Flows: The Discharge Coefficient Prediction,” J Engines, vol. 111, sec. 3, pp. 1901–1918, 2002. http://dx.doi.org/10.4271/2002-01-1118
 G. Tippelmann, “A new method of investigation of swirl ports,” SAE Transactions, vol. 86, sec. 3, pp. 1745–1757, 1977. https://doi.org/10.4271/770404
 L. Stager & R. Reitz, presented in “Assessment of Diesel Engine Size-Scaling Relationships,” SAE World Congress, UW, DET, USA, 16-19 Apr. 2007. https://doi.org/10.4271/2007-01-0127
 Ignacio Gómez IHM , “Motores,” igihm.com. Available: https://www.igihm.com/motores/ (accessed aug. 12, 2019).
 P. Stephenson & C. Rutland, “Modeling the Effects of Valve Lift Profile on Intake Flow and Emissions Behavior in a DI Diesel Engine,” Fuels and Lubricants Meeting and Exhibition, SAE, TOR, CA, 16-19 Oct. 1995. https://doi.org/10.4271/952430
 F. Payri, J. Benajes, X. Margot & A. Gil, “CFD modeling of the in-cylinder flow in direct-injection Diesel engines,” Comput Fluids, vol. 33, no. 8, pp. 995–1021, Sep. 2004. https://doi.org/10.1016/j.compfluid.2003.09.003
 A. M. Bharadwaj, K. Madhu, K. J. Seemanthini, K. G. Vismay, T. Aravind & A. M. Shivapuji, “Study of Swirl and Tumble Motion using CFD,” IJTRME, vol. 1, no. 2, pp. 5–8, 2013. Available from http://www.irdindia.in/journal_ijtarme/pdf/vol1_iss2/2.pdf
 L. Staples, R. Reitz & C. Hergart, “An Experimental Investigation into Diesel Engine Size-Scaling Parameters,” SAE Int J Engines, vol. 2, no. 1, pp. 1068–1084 , 2009. https://doi.org/10.4271/2009-01-1124
 Y. Shi & R. Reitz, “Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales,” SAE World Congress & Exhibition, SAE, DET, USA, p. 1–21, 14-17 Apr. 2008. https://doi.org/10.4271/2008-01-0955
 M. Tess, C. Lee & R. Reitz, “Diesel Engine Size Scaling at Medium Load without EGR,” SAE Int. J. Engines, vol. 1, no. 1, pp. 1993–2009, 2011. https://doi.org/10.4271/2011-01-1384
 M. Masi, L. Artico & P. Gobbato, “Measurements of the Intake and In-Cylinder Flow Field to investigate the reliability of CFD Steady-state simulation for actual engines,” 12th International Conference on Engines & Vehicles, SAE, Capri, IT, 13-17 Sept. 2015. https://doi.org/10.4271/2015-24-2404
 X. Yang, T.-W. Kuo, O. Guralp, R. O. Grover & P. Najt, “In-Cylinder Flow Correlations between steady flow bench and motored engine using computational fluid dynamics,” J Eng Gas Turbine Power J Eng Gas Turb Power, vol. 139, no. 7, pp. 1–8, 2017. https://doi.org/10.1115/1.4035627
 B. V. V. S. U. Prasad, C. S. Sharma, T. N. C. Anand & R. V. Ravikrishna, “High swirl-inducing piston bowls in small diesel engines for emission reduction,” Applied Energy, vol. 88, no. 7, pp. 2355–2367, 2011. https://doi.org/10.1016/j.apenergy.2010.12.068
 M. Battistoni, A. Cancellieri & F. Mariani, “Steady and Transient Fluid Dynamic Analysis of the tumble and swirl evolution on a 4V engine with independent intake valves action,” PF&L Meeting, SAE, RSMT, USA, 6-9 Oct. 2008. https://doi.org/10.4271/2008-01-2392
 A. A. E.-S. Mohamed, S. Abo-Elfadl, A. E.-M. M. Nassib, “Effect of shroud and orientation angles of inlet valve on flow characteristic through helical-spiral inlet port in diesel engine,” J. Eng. Gas Turbines Power, vol. 139, no. 10, pp. 1–7, Oct. 2017. https://doi.org/10.1115/1.4036381
 E. Barrientos, I. Bortel, M. Takats & J. Vavra, “Impact of intake induced swirl on combustion and emissions on a single cylinder diesel engine,” ICEF, ASME, GRVL, USA, 9–12 Oct. 2016. http://dx.doi.org/10.1115/ICEF2016-9325
dc.relation.citationendpage.none.fl_str_mv 298
dc.relation.citationstartpage.none.fl_str_mv 285
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 16
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/2783/3250
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2783/3548
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2783/3577
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2020 : (Julio-Diciembre)
dc.rights.spa.fl_str_mv INGE CUC - 2020
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2020
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
application/xml
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/2783
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9894f18f-29e2-45e4-83ec-a0daeaa69684/download
bitstream.checksum.fl_str_mv a22c2899884c4c213557eb26ef984b47
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760769618935808
spelling Santos, CarlosPerez, LuisDuarte Forero, Jorge2020-04-30 00:00:002024-04-09T20:17:47Z2020-04-30 00:00:002024-04-09T20:17:47Z2020-04-300122-6517https://hdl.handle.net/11323/12266https://doi.org/10.17981/ingecuc.16.2.2020.2310.17981/ingecuc.16.2.2020.232382-4700Introducción— El análisis del flujo de aire, en Motores de Combustión Interna expone un gran desafío para los investigadores debido al comportamiento que presenta el aire dentro del cilindro, el cual se caracteriza por ser turbulento, inestable, cíclico y no estacionario tanto espacial como temporalmente. El presente estudio propone implementar de un modelo de turbulencia a través de un análisis de Dinámica de Fluidos Computacional (CFD) que permita simplificar el fenómeno para motores de baja cilindrada y describa los parámetros que repercuten en la eficiencia y emisiones del motor. Objetivos— El presente estudio busca analizar el comportamiento del flujo de aire en el sistema de admisión de un motor Diésel de baja cilindrada con aspiración natural a través de un modelo experimental ajustado mediante un modelado CFD. Metodología— Se realizó el análisis del comportamiento del flujo de aire en el sistema de admisión del motor con un modelo experimental que obtiene las características del flujo. Este modelo es ajustado mediante herramientas CFD en OPENFOAM®, que permitirá obtener el Coeficiente de Descarga (CD) y el Coeficiente de Torbellino (CT) para describir el comportamiento aerodinámico del sistema de admisión. Resultados— Para el CD, los valores oscilan entre 0 L/D y 0.5 L/D indicando que este motor es capaz de trasegar un 50% de aire de la capacidad teórica con una válvula de 30.5 mm de diámetro y una cámara de 0.3 L de volumen. En cuanto al CT, para un área de referencia variable, los valores oscilan entre 0.19 L/D y 0.3 L/D, por lo que el motor solo disminuiría un 11% su capacidad de trasegar flujo de aire de la capacidad ideal, si el flujo másico teórico va en aumento para cada levantamiento. Conclusiones— Se puede concluir que para 3000 rpm y 3400 rpm se produce un vórtice definido bajo la metodología propuesta, obteniendo valores de velocidad muy cercanos a 10 m/s y 20 m/s en la periferia, que aseguran el flujo de aire con vorticidad en el cilindro. A 3400 rpm el CT se eleva con respecto a los demás regímenes en los últimos levantamientos de válvula. Concluyendo así, que bajo este régimen de giro se da el punto óptimo de generación de vorticidad para el motor que permite reducir las emisiones e incrementar le eficiencia global.Introduction— The airflow analysis for Internal Combustion Engines (ICE) remains challenging for researchers due to the complexity of the flow interactions inside the cylinder. Different flow characteristics such as turbulence, instability, periodicity, and non-stationary conditions required advanced methods to describe the overall behavior. The present study proposed the implementation of a turbulence model through Computational Fluid Dynamics (CFD) analysis that further simplifies the airflow phenomena for low-displacement engines while describing the parameters that influence the engine efficiency and emissions. Objectives— The study aims to analyze the airflow behavior in the intake system of a low-displacement diesel engine with natural aspiration through an experimental model adjusted by CFD analysis. Methodology— The analysis of the airflow behavior in the intake system of the engine was carried out with an experimental model that describes the airflow characteristics. This model is adjusted via CFD analysis in OPENFOAM®, which determines Both Discharge (DC) and Swirl Coefficients (SC) to describe the flow interactions in the intake system. Results— The DC values ranged between 0 L/D to 0.5 L/D, indicating that this engine can displace 50% of the ideal airflow with a valve diameter of 30.5 mm and a chamber volume of 0.3 L. In contrast, the SC, for a variable reference area, ranged from 0. L/D 3 to 0.19 L/D, stating that the engine experiences less airflow displacement, specifically 11% of the theoretical capacity as the mass flow increases for each valve lift. Conclusions— In conclusion, the methodology implemented in the study showed that for rotatory regimes of 3000 rpm and 3400 rpm, a concrete vortex is generated with velocity values between 10 m/s and 20 m/s in the peripherical region, which ensures the airflow rotation with vorticity inside the cylinder. At 3400 rpm, the SC value increments are compared to other regimes when the end of the valve lift distance is reached. Thus, it can be verified that under this regime, the optimal vorticity generation is achieved, which contributes to reduce emissions and boost the global efficiency of the engine.application/pdftext/htmlapplication/xmlspaUniversidad de la CostaINGE CUC - 2020http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/2783Diesel enginesOpenFOAMCFDdischarge coefficientswirl motionCFDOpenFOAMcoeficiente de descargacoeficiente de torbellinomotores DieselAnálisis CFD del comportamiento del flujo de aire en el sistema de admisión de un motor diésel de baja cilindradaCFD analysis of the airflow behavior in the intake system of a low-displacement diesel engineArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge Cuc Y. Varola, H. F. Oztop, M. Firata & A. Kocab, “CFD Modeling of heat transfer and fluid flow inside a pent-roof type combustion,” Int Commun Heat Mass, vol. 37, no. 9, pp. 1366–1375, Nov. 2010. https://doi.org/10.1016/j.icheatmasstransfer.2010.07.003 S. Jiang, S. Zhu, H. Wen & S. Huang, “Parameter analysis of diesel helical intake port numerical desing,” Energy Procedia, vol. 16, Part A, pp. 558–563, 2012. https://doi.org/10.1016/j.egypro.2012.01.090 B. Jayashankara & V. Ganesan, “Effect of fuel injection timing and intake pressure on the performance of DI diesel Engine - A parametric study using CFD,” Energy Convers Manag, vol. 51, no. 10, pp. 1835–1848, 2009. http://dx.doi.org/10.1016/j.enconman.2009.11.006 G. Kalghatgi, “Developments in internal combustion engines and implications for combustion science and future transport fuels,” Proc Combust Inst, vol. 35, no. 1, pp. 101–115, 2014. https://doi.org/10.1016/j.proci.2014.10.002 A. Gil, Modelado tridimensional del flujo de aire en el cilindro de motores diesel de inyeccion directa. VA, ES: Reverte, 2007. J. S. Meurer, “Die Erzeugung von Drehbewegungen der Luft in den Zylindern schnellaufender Viertakt-Dieselmaschinen durch die Einlaßorgane,” MAN-Forsch, n. 1, s. 8–22, 1951. G. Thien, “Entwicklungsarbeiten an ventilkanälen on viertakt Diesel Motoren,” ÖIZ, vol. 8, n. 9, 1965. T. Uzkan, C. Borgnakke & T. Morel, “Characterization of Flow produced by a high-swirl inlet port,” IHC, AA, MI, USA, SAE Technical Papers 830266, 1983. https://doi.org/10.4271/830266 J. Morea-Roy, M. Muñoz & F. Moreno, “Simulación numerica del ciclo operativo de un motor de encendido provocado,” Rev inter met num calc dis ing, vol. 15, no. 2, pp. 207–216, 1999. Disponible en http://hdl.handle.net/2099/4567 A. Rahiman, A. Razak, M. Samee & M. K. Ramis, “CFD Analysis of flow field development in a direct injection diesel engine with different manifolds,” Am J Fluid Dyn, vol. 4, no. 3, pp. 102–113, 2014. Available: http://article.sapub.org/10.5923.j.ajfd.20140403.03.html R. Holkar, Y. N. Sule-Patil, S. M. Pise, Y. A. Godase & V. Jagadale, “Numerical simulation of steady flow through engine intake system using CFD,” IOSR JMCE, vol. 12, no. 1, pp. 30–45, 2015. Available: https://www.iosrjournals.org/ J. V. Pastor, Movimiento del aire en motores diesel de inyeccion directa, VAL, ES: UPV, 1997. G. Thien, “Derivation of the formulas for the evaluation of stationary flow measurements,” ÖIZ, AU, VIE, AVL-FA-Report Nº. 463/Gen./072, 1978. G. Thien, “Entwicklungsarbeiten an Ventilkanalen von Viertakt Dieselmotoren,” ÖIZ, vol. 9, 1965. J. C. Dent & J. A. Derham, “Air Motion in a Four-Stroke Direct Injection Diesel Engine,” IME, vol. 188, no. 21, pp. 269–280, Jun. 1974. https://doi.org/10.1243%2FPIME_PROC_1974_188_030_02 G. C. Davis & J. C. Kent, “Comparison of model calculations and experimental measurements of the bulk cylinder flow processes in a motored PROCO engine,” SAE, DET, USA, SAE Technical Paper 790290, 1979. https://doi.org/10.4271/790290 R. C. Engineers, “Information to clients on Ricardo’s Laser-Doppler velocimeter,” Ricardo Engineering Report, 1976. A. Murakami, M. Arai & H. Hiroyasu, “Swirl Measurements and Modelling in Direct Injection Diesel Engines,” Univ Hiroshima, HIJ, JPN, SAE Technical Paper 880385, 1988. https://doi.org/10.4271/880385 R. Leal & J. L. Filgueiras, “Industrial airflows numerical simulation in ducts and devices using all-speed algorithm in structured meshes,” Ingeniare, vol. 26, no. 2, pp. 273–282, 2008. http://dx.doi.org/10.4067/S0718-33052018000200273 L. Rodríguez, M. Collado, E. Rodríguez & L. Patiño, “Análisis numérico del comportamiento del aire en un sistema de distribución de aire acondicionado empleando los modelos de turbulencia K-E, RNG K-E y el modelo de las tensiones de Reynolds,” Ingeniare, vol. 16, no. 2, pp. 370–382, 2008. http://dx.doi.org/10.4067/S0718-33052008000200012 G. P. Blair, H. B. Lau, A. Cartwright, B. D. Raghunathan & D. O. Mackey, “Coefficients of Discharge at the Aperatures of Engines,” J Engines, vol. 104, no. 3, pp. 2048–2062, 1995. https://doi.org/10.4271/952138 J. Derham, “Air Motion in a Four Stroke Direct Injection Diesel Engine,” Doctoral Thesis, LUT, Loughb, ENG, 1971. Available: https://hdl.handle.net/2134/36161 H. Fujimoto, T. Nakagawa, H. Kudo, T. Wakisaka & Y. Shimamotoc, “A study on the formation of vertical vortex in the cylinder of an I.C engine using CFD: Effect of intake valve closing timing,” JSAE , vol. 16, no. 4, pp. 349–355, 1995. https://doi.org/10.1016/0389-4304(95)00041-5 J. Benajes, X. Margot, J. Pastor & A. Gil, “Three dimensional calculation of the flow in a DI Diesel engine with variable swirl PORTS,” ATTCE, BCN, ES, SAE Technical Paper 2001-01-3230, 2001. https://doi.org/10.4271/2001-01-3230 S. Zirngibl, M. Prager & G. Wachtmeister, “Experimental and Simulative Approaches for the determination of the discharge coefficients for inlet and exhaust valves and ports in internal combustion engines,” presented SAE World Congress Experience, WCX™ 17, DET, USA, 2017. http://dx.doi.org/10.4271/2017-01-5022 S. F. Wang & B. E. Milton, “Investigation of the Helical Inlet Port,” presented in International Fall Fuels and Lubricants Meeting and Exposition, TIB, TLS, USA, Oct. 13-16, 1997. https://doi.org/10.4271/982539 G. M. Bianchi, G. Cantore & S. Fontanesi, “Turbulence Modelling in CFD Simulation of ICE Intake Flows: The Discharge Coefficient Prediction,” J Engines, vol. 111, sec. 3, pp. 1901–1918, 2002. http://dx.doi.org/10.4271/2002-01-1118 G. Tippelmann, “A new method of investigation of swirl ports,” SAE Transactions, vol. 86, sec. 3, pp. 1745–1757, 1977. https://doi.org/10.4271/770404 L. Stager & R. Reitz, presented in “Assessment of Diesel Engine Size-Scaling Relationships,” SAE World Congress, UW, DET, USA, 16-19 Apr. 2007. https://doi.org/10.4271/2007-01-0127 Ignacio Gómez IHM , “Motores,” igihm.com. Available: https://www.igihm.com/motores/ (accessed aug. 12, 2019). P. Stephenson & C. Rutland, “Modeling the Effects of Valve Lift Profile on Intake Flow and Emissions Behavior in a DI Diesel Engine,” Fuels and Lubricants Meeting and Exhibition, SAE, TOR, CA, 16-19 Oct. 1995. https://doi.org/10.4271/952430 F. Payri, J. Benajes, X. Margot & A. Gil, “CFD modeling of the in-cylinder flow in direct-injection Diesel engines,” Comput Fluids, vol. 33, no. 8, pp. 995–1021, Sep. 2004. https://doi.org/10.1016/j.compfluid.2003.09.003 A. M. Bharadwaj, K. Madhu, K. J. Seemanthini, K. G. Vismay, T. Aravind & A. M. Shivapuji, “Study of Swirl and Tumble Motion using CFD,” IJTRME, vol. 1, no. 2, pp. 5–8, 2013. Available from http://www.irdindia.in/journal_ijtarme/pdf/vol1_iss2/2.pdf L. Staples, R. Reitz & C. Hergart, “An Experimental Investigation into Diesel Engine Size-Scaling Parameters,” SAE Int J Engines, vol. 2, no. 1, pp. 1068–1084 , 2009. https://doi.org/10.4271/2009-01-1124 Y. Shi & R. Reitz, “Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales,” SAE World Congress & Exhibition, SAE, DET, USA, p. 1–21, 14-17 Apr. 2008. https://doi.org/10.4271/2008-01-0955 M. Tess, C. Lee & R. Reitz, “Diesel Engine Size Scaling at Medium Load without EGR,” SAE Int. J. Engines, vol. 1, no. 1, pp. 1993–2009, 2011. https://doi.org/10.4271/2011-01-1384 M. Masi, L. Artico & P. Gobbato, “Measurements of the Intake and In-Cylinder Flow Field to investigate the reliability of CFD Steady-state simulation for actual engines,” 12th International Conference on Engines & Vehicles, SAE, Capri, IT, 13-17 Sept. 2015. https://doi.org/10.4271/2015-24-2404 X. Yang, T.-W. Kuo, O. Guralp, R. O. Grover & P. Najt, “In-Cylinder Flow Correlations between steady flow bench and motored engine using computational fluid dynamics,” J Eng Gas Turbine Power J Eng Gas Turb Power, vol. 139, no. 7, pp. 1–8, 2017. https://doi.org/10.1115/1.4035627 B. V. V. S. U. Prasad, C. S. Sharma, T. N. C. Anand & R. V. Ravikrishna, “High swirl-inducing piston bowls in small diesel engines for emission reduction,” Applied Energy, vol. 88, no. 7, pp. 2355–2367, 2011. https://doi.org/10.1016/j.apenergy.2010.12.068 M. Battistoni, A. Cancellieri & F. Mariani, “Steady and Transient Fluid Dynamic Analysis of the tumble and swirl evolution on a 4V engine with independent intake valves action,” PF&L Meeting, SAE, RSMT, USA, 6-9 Oct. 2008. https://doi.org/10.4271/2008-01-2392 A. A. E.-S. Mohamed, S. Abo-Elfadl, A. E.-M. M. Nassib, “Effect of shroud and orientation angles of inlet valve on flow characteristic through helical-spiral inlet port in diesel engine,” J. Eng. Gas Turbines Power, vol. 139, no. 10, pp. 1–7, Oct. 2017. https://doi.org/10.1115/1.4036381 E. Barrientos, I. Bortel, M. Takats & J. Vavra, “Impact of intake induced swirl on combustion and emissions on a single cylinder diesel engine,” ICEF, ASME, GRVL, USA, 9–12 Oct. 2016. http://dx.doi.org/10.1115/ICEF2016-9325298285216https://revistascientificas.cuc.edu.co/ingecuc/article/download/2783/3250https://revistascientificas.cuc.edu.co/ingecuc/article/download/2783/3548https://revistascientificas.cuc.edu.co/ingecuc/article/download/2783/3577Núm. 2 , Año 2020 : (Julio-Diciembre)PublicationOREORE.xmltext/xml2690https://repositorio.cuc.edu.co/bitstreams/9894f18f-29e2-45e4-83ec-a0daeaa69684/downloada22c2899884c4c213557eb26ef984b47MD5111323/12266oai:repositorio.cuc.edu.co:11323/122662024-09-17 11:04:01.713http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2020metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co