CTR prediction for optimizing the negotiation of internet advertising campaigns

Web advertising campaigns have the particularity that allow to measure the performance of campaigns based on different metrics, among which are the cost per thousand impressions (CPM-Cost Per mille), cost per click (CPC) and the click-to-print ratio (CTR-Click Through Ratio). For this reason, each a...

Full description

Autores:
Silva, Jesús
Vargas, Jesús
Rizzo-Vergara, Dawin
Araya Ugarte, Guillermo Agustín
Rosado, César Enrique
Pineda, Omar
Quintero, Benjamín
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7739
Acceso en línea:
https://hdl.handle.net/11323/7739
https://doi.org/10.1007/978-981-15-4875-8_13
https://repositorio.cuc.edu.co/
Palabra clave:
Smart cities
Wireless sensor networks
Internet of things
Wireless nodes
Communication architecture
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_843d96a3288da15abd8d0dcaff8b553c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7739
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv CTR prediction for optimizing the negotiation of internet advertising campaigns
title CTR prediction for optimizing the negotiation of internet advertising campaigns
spellingShingle CTR prediction for optimizing the negotiation of internet advertising campaigns
Smart cities
Wireless sensor networks
Internet of things
Wireless nodes
Communication architecture
title_short CTR prediction for optimizing the negotiation of internet advertising campaigns
title_full CTR prediction for optimizing the negotiation of internet advertising campaigns
title_fullStr CTR prediction for optimizing the negotiation of internet advertising campaigns
title_full_unstemmed CTR prediction for optimizing the negotiation of internet advertising campaigns
title_sort CTR prediction for optimizing the negotiation of internet advertising campaigns
dc.creator.fl_str_mv Silva, Jesús
Vargas, Jesús
Rizzo-Vergara, Dawin
Araya Ugarte, Guillermo Agustín
Rosado, César Enrique
Pineda, Omar
Quintero, Benjamín
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Vargas, Jesús
Rizzo-Vergara, Dawin
Araya Ugarte, Guillermo Agustín
Rosado, César Enrique
Pineda, Omar
Quintero, Benjamín
dc.subject.spa.fl_str_mv Smart cities
Wireless sensor networks
Internet of things
Wireless nodes
Communication architecture
topic Smart cities
Wireless sensor networks
Internet of things
Wireless nodes
Communication architecture
description Web advertising campaigns have the particularity that allow to measure the performance of campaigns based on different metrics, among which are the cost per thousand impressions (CPM-Cost Per mille), cost per click (CPC) and the click-to-print ratio (CTR-Click Through Ratio). For this reason, each ad has a specific objective based on these indicators which aim to distribute the purchase of advertising space on the Internet in the best possible way in order to have a better return on investment based on these metrics. The costs incurred in the development of its services is significant and the objectives of the campaigns are not always achieved because it assumes the variability of Internet user behavior. This project consists of proposing a regression model based on the historical data of the companies providing the programmatic purchasing service, in order to optimize negotiations on performance metrics in advertising campaigns with advertisers.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-21T13:38:32Z
dc.date.available.none.fl_str_mv 2021-01-21T13:38:32Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7739
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-4875-8_13
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7739
https://doi.org/10.1007/978-981-15-4875-8_13
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Aladag, C., Hocaoglu, G.: A tabu search algorithm to solve a course timetabling problem. Hacettepe J. Math. Stat. 53–64 (2007)
2. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program (report 826) (1989)
3. Frausto-Solís, J., Alonso-Pecina, F., Mora-Vargas, J.: An efficient simulated annealing algorithm for feasible solutions of course timetabling. pp. 675–685. Springer (2008)
4. Joudaki, M., Imani, M., Mazhari, N.: Using Improved Memetic Algorithm and Local Search to Solve University Course Timetabling Problem (UCTTP). Islamic Azad University, Doroud, Iran (2010)
5. Coopers, P.W.H., IAB internet advertising revenue report. URL: http://www.iab.net/insights_research/industry_data_and_landscape/adrevenuereport (2014)
6. Tuzhilin, A.: The Lane’s Gifts v. Google Report. Official Google blog: Findings on invalid clicks. pp. 1–47 (2006)
7. Ponce, H., Ponce, P., Molina, A.: Artificial Organic Networks: Artificial Intelligence Based on Carbon Networks. Studies in Computational Intelligence, vol. 521. Springer (2014)
8. Ponce, H., Ponce, P., Molina, A.: A new training algorithm for artificial hydrocarbon networks using an energy model of covalent bonds. 7th IFAC Conf. Manuf. Model. Manag. Control. 7(1), 602–608 (2013)
9. Moe, W.W.: Targeting display advertising. Advanced database marketing: Innovative methodologies & applications for managing customer relationships. Londres: Gower Publishing (2013)
10. Stone-Gross, B., Stevens, R., Zarras, A., Kemmerer, R., Kruegel, C., Vigna, G.: Understanding fraudulent activities in online ad exchanges. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, pp. 279–294. ACM (2011)
11. McMahan, H.B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J. Kubica, J.: Ad click prediction: a view from the trenches. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1222–1230. ACM (2013)
12. Ponce, H., Ponce, P.: Artificial organic networks. In: IEEE Conference on Electronics, Robotics, and Automotive Mechanics CERMA, pp. 29–34. (2011)
13. Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008)
14. Granitto, P.M., Furlanello, C., Biasioli, F., Gasperi, F.: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometr. Intell. Lab. Syst. 83(2), 83–90 (2006)
15. Kuhn, W., Wing, J., Weston, S., Williams, A., Keefer, C., et al.: Caret: Classification and Regression Training. R package, vol. 515. (2012)
16. Miller, B., Pearce, P., Grier, C., Kreibich, C., Paxson, V.: What’s clicking what? Techniques and innovations of today’s clickbots. In: Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 164–183. Springer (2011)
17. Kamatkar, S. J., Tayade, A., Viloria, A., Hernández-Chacín, A.: Application of classification technique of data mining for employee management system. In International Conference on Data Mining and Big Data, pp. 434–444. Springer, Cham (2018, June)
18. Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernandez, L., Cali, E.G.: Database performance tuning and query optimization. In: International Conference on Data Mining and Big Data, pp. 3–11. Springer, Cham (2018, June)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Smart Innovation, Systems and Technologies
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-4875-8_13
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/6dfaaacb-011b-4652-8ab1-ac29bebb85bb/download
https://repositorio.cuc.edu.co/bitstreams/254e4169-d2e4-4106-80b6-43f6824f96c2/download
https://repositorio.cuc.edu.co/bitstreams/5daf0ab2-9a74-49c4-acbb-c2ad5409cf0b/download
https://repositorio.cuc.edu.co/bitstreams/08345138-2e1d-41b6-9fbc-9d17eb8fbe90/download
https://repositorio.cuc.edu.co/bitstreams/531318e0-0a9f-455a-b7ab-e185a6cf0f8d/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
6d5e4c99529516f188d21fceca72ebc7
946f0281e0af9ea4fdd8ca7b929cf300
b3e439f6f5795422414156b831e92518
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760739551019008
spelling Silva, JesúsVargas, JesúsRizzo-Vergara, DawinAraya Ugarte, Guillermo AgustínRosado, César EnriquePineda, OmarQuintero, Benjamín2021-01-21T13:38:32Z2021-01-21T13:38:32Z2020https://hdl.handle.net/11323/7739https://doi.org/10.1007/978-981-15-4875-8_13Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Web advertising campaigns have the particularity that allow to measure the performance of campaigns based on different metrics, among which are the cost per thousand impressions (CPM-Cost Per mille), cost per click (CPC) and the click-to-print ratio (CTR-Click Through Ratio). For this reason, each ad has a specific objective based on these indicators which aim to distribute the purchase of advertising space on the Internet in the best possible way in order to have a better return on investment based on these metrics. The costs incurred in the development of its services is significant and the objectives of the campaigns are not always achieved because it assumes the variability of Internet user behavior. This project consists of proposing a regression model based on the historical data of the companies providing the programmatic purchasing service, in order to optimize negotiations on performance metrics in advertising campaigns with advertisers.Silva, JesúsVargas, JesúsRizzo-Vergara, Dawin-will be generated-orcid-0000-0001-8778-5039-600Araya Ugarte, Guillermo Agustín-will be generated-orcid-0000-0001-9068-8053-600Rosado, César Enrique-will be generated-orcid-0000-0002-9064-7451-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Quintero, Benjamínapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Smart Innovation, Systems and Technologieshttps://link.springer.com/chapter/10.1007/978-981-15-4875-8_13Smart citiesWireless sensor networksInternet of thingsWireless nodesCommunication architectureCTR prediction for optimizing the negotiation of internet advertising campaignsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Aladag, C., Hocaoglu, G.: A tabu search algorithm to solve a course timetabling problem. Hacettepe J. Math. Stat. 53–64 (2007)2. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program (report 826) (1989)3. Frausto-Solís, J., Alonso-Pecina, F., Mora-Vargas, J.: An efficient simulated annealing algorithm for feasible solutions of course timetabling. pp. 675–685. Springer (2008)4. Joudaki, M., Imani, M., Mazhari, N.: Using Improved Memetic Algorithm and Local Search to Solve University Course Timetabling Problem (UCTTP). Islamic Azad University, Doroud, Iran (2010)5. Coopers, P.W.H., IAB internet advertising revenue report. URL: http://www.iab.net/insights_research/industry_data_and_landscape/adrevenuereport (2014)6. Tuzhilin, A.: The Lane’s Gifts v. Google Report. Official Google blog: Findings on invalid clicks. pp. 1–47 (2006)7. Ponce, H., Ponce, P., Molina, A.: Artificial Organic Networks: Artificial Intelligence Based on Carbon Networks. Studies in Computational Intelligence, vol. 521. Springer (2014)8. Ponce, H., Ponce, P., Molina, A.: A new training algorithm for artificial hydrocarbon networks using an energy model of covalent bonds. 7th IFAC Conf. Manuf. Model. Manag. Control. 7(1), 602–608 (2013)9. Moe, W.W.: Targeting display advertising. Advanced database marketing: Innovative methodologies & applications for managing customer relationships. Londres: Gower Publishing (2013)10. Stone-Gross, B., Stevens, R., Zarras, A., Kemmerer, R., Kruegel, C., Vigna, G.: Understanding fraudulent activities in online ad exchanges. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, pp. 279–294. ACM (2011)11. McMahan, H.B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J. Kubica, J.: Ad click prediction: a view from the trenches. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1222–1230. ACM (2013)12. Ponce, H., Ponce, P.: Artificial organic networks. In: IEEE Conference on Electronics, Robotics, and Automotive Mechanics CERMA, pp. 29–34. (2011)13. Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008)14. Granitto, P.M., Furlanello, C., Biasioli, F., Gasperi, F.: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometr. Intell. Lab. Syst. 83(2), 83–90 (2006)15. Kuhn, W., Wing, J., Weston, S., Williams, A., Keefer, C., et al.: Caret: Classification and Regression Training. R package, vol. 515. (2012)16. Miller, B., Pearce, P., Grier, C., Kreibich, C., Paxson, V.: What’s clicking what? Techniques and innovations of today’s clickbots. In: Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 164–183. Springer (2011)17. Kamatkar, S. J., Tayade, A., Viloria, A., Hernández-Chacín, A.: Application of classification technique of data mining for employee management system. In International Conference on Data Mining and Big Data, pp. 434–444. Springer, Cham (2018, June)18. Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernandez, L., Cali, E.G.: Database performance tuning and query optimization. In: International Conference on Data Mining and Big Data, pp. 3–11. Springer, Cham (2018, June)PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/6dfaaacb-011b-4652-8ab1-ac29bebb85bb/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/254e4169-d2e4-4106-80b6-43f6824f96c2/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALCTR prediction for optimizing the negotiation of internet advertising campaigns.pdfCTR prediction for optimizing the negotiation of internet advertising campaigns.pdfapplication/pdf99458https://repositorio.cuc.edu.co/bitstreams/5daf0ab2-9a74-49c4-acbb-c2ad5409cf0b/download6d5e4c99529516f188d21fceca72ebc7MD51THUMBNAILCTR prediction for optimizing the negotiation of internet advertising campaigns.pdf.jpgCTR prediction for optimizing the negotiation of internet advertising campaigns.pdf.jpgimage/jpeg32147https://repositorio.cuc.edu.co/bitstreams/08345138-2e1d-41b6-9fbc-9d17eb8fbe90/download946f0281e0af9ea4fdd8ca7b929cf300MD54TEXTCTR prediction for optimizing the negotiation of internet advertising campaigns.pdf.txtCTR prediction for optimizing the negotiation of internet advertising campaigns.pdf.txttext/plain1332https://repositorio.cuc.edu.co/bitstreams/531318e0-0a9f-455a-b7ab-e185a6cf0f8d/downloadb3e439f6f5795422414156b831e92518MD5511323/7739oai:repositorio.cuc.edu.co:11323/77392024-09-17 10:54:24.097http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==