Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure

Urban tunnel infrastructure, crucial for societal well-being, depends on reliable Tunnel Electromechanical Equipment (TEE), including ventilation, drainage, and lighting systems. A key challenge is these systems’ proactive and efficient maintenance, particularly under limited resources. This study i...

Full description

Autores:
Zou, Xiaoping
Zeng , Jie
Yan, Gongxing
Mohammed, Khidhair Jasim
Abbas, Mohamed
Abdullah, Nermeen
Elattar, Samia
Amine Khadimallah, Mohamed
Toghroli, Sana
Escorcia-Gutierrez, José
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13357
Acceso en línea:
https://hdl.handle.net/11323/13357
Palabra clave:
Urban Tunnel Infrastructure
Tunnel Electromechanical Equipment (TEE)
Deep Learning
Tunnel Boring Machine (TBM) Performance
Att-GCN (Attention-based Graph Convolutiona Networks)
Predictive Maintenance
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_82790f105ca694e3e9efd4a44ee9a313
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13357
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure
title Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure
spellingShingle Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure
Urban Tunnel Infrastructure
Tunnel Electromechanical Equipment (TEE)
Deep Learning
Tunnel Boring Machine (TBM) Performance
Att-GCN (Attention-based Graph Convolutiona Networks)
Predictive Maintenance
title_short Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure
title_full Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure
title_fullStr Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure
title_full_unstemmed Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure
title_sort Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure
dc.creator.fl_str_mv Zou, Xiaoping
Zeng , Jie
Yan, Gongxing
Mohammed, Khidhair Jasim
Abbas, Mohamed
Abdullah, Nermeen
Elattar, Samia
Amine Khadimallah, Mohamed
Toghroli, Sana
Escorcia-Gutierrez, José
dc.contributor.author.none.fl_str_mv Zou, Xiaoping
Zeng , Jie
Yan, Gongxing
Mohammed, Khidhair Jasim
Abbas, Mohamed
Abdullah, Nermeen
Elattar, Samia
Amine Khadimallah, Mohamed
Toghroli, Sana
Escorcia-Gutierrez, José
dc.subject.proposal.none.fl_str_mv Urban Tunnel Infrastructure
topic Urban Tunnel Infrastructure
Tunnel Electromechanical Equipment (TEE)
Deep Learning
Tunnel Boring Machine (TBM) Performance
Att-GCN (Attention-based Graph Convolutiona Networks)
Predictive Maintenance
dc.subject.proposal.eng.fl_str_mv Tunnel Electromechanical Equipment (TEE)
Deep Learning
Tunnel Boring Machine (TBM) Performance
Att-GCN (Attention-based Graph Convolutiona Networks)
Predictive Maintenance
description Urban tunnel infrastructure, crucial for societal well-being, depends on reliable Tunnel Electromechanical Equipment (TEE), including ventilation, drainage, and lighting systems. A key challenge is these systems’ proactive and efficient maintenance, particularly under limited resources. This study introduces a novel deep learning-based multi-output prediction model developed to enhance the understanding and predictive accuracy Tunnel Boring Machine (TBM) performance, with a specific focus on machine wear and tear (y1) and adapting to ground conditions and geotechnical data (y2) in complex underground environments. The model employs an advanced deep learning approach, att-GCN, which innovatively integrates Graph Convolutional Networks (GCN) with a scaled dot-product attention mechanism. This combination notably improves model performance and interpretability. Experimental results indicate that att-GCN model achieves a Mean Absolute Percentage Error (MAPE) of 17.1% for y1 and 16.8% for y2, outperforming other established algorithms, including the Deep Neural Network (DNN)-Genetic algorithm hybrid. Furthermore, an online learning variant of att-GCN was developed that integrates real-time data during tunneling operations. This version demonstrated enhanced predictive accuracy, with a MAPE of 8.7% for y1 and 8.1% for y2. Applying att-GCN for real-time TBM performance estimation based on dynamic monitoring data offers significant insights for intelligent TBM control, improving construction efficiency and reliability.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-23T20:39:11Z
dc.date.available.none.fl_str_mv 2024-09-23T20:39:11Z
2026-09
dc.date.issued.none.fl_str_mv 2024-09
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Xiaoping Zou, Jie Zeng, Gongxing Yan, Khidhair Jasim Mohammed, Mohamed Abbas, Nermeen Abdullah, Samia Elattar, Mohamed Amine Khadimallah, Sana Toghroli, José Escorcia-Gutierrez, Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure, Computers and Geotechnics, Volume 173, 2024, 106532, ISSN 0266-352X, https://doi.org/10.1016/j.compgeo.2024.106532.
dc.identifier.issn.none.fl_str_mv 0266-352X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13357
dc.identifier.doi.none.fl_str_mv 10.1016/j.compgeo.2024.106532.
dc.identifier.eissn.none.fl_str_mv 1873-7633
identifier_str_mv Xiaoping Zou, Jie Zeng, Gongxing Yan, Khidhair Jasim Mohammed, Mohamed Abbas, Nermeen Abdullah, Samia Elattar, Mohamed Amine Khadimallah, Sana Toghroli, José Escorcia-Gutierrez, Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure, Computers and Geotechnics, Volume 173, 2024, 106532, ISSN 0266-352X, https://doi.org/10.1016/j.compgeo.2024.106532.
0266-352X
10.1016/j.compgeo.2024.106532.
1873-7633
url https://hdl.handle.net/11323/13357
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Computers and Geotechnics
dc.relation.references.none.fl_str_mv Afshani, 2019 A. Afshani, et al. Study of infrared thermal application for detecting defects within tunnel lining Tunn. Undergr. Space Technol., 86 (2019), pp. 186-197
Ansarian and Mahmoodabadi, 2023 A. Ansarian, M.J. Mahmoodabadi Multi-objective optimal design of a fuzzy adaptive robust fractional-order PID controller for a nonlinear unmanned flying system Aerosp. Sci. Technol., 141 (2023), Article 108541
Arani et al., 2019 K.S. Arani, Y. Zandi, B.T. Pham, M.A. Mu’azu, J. Katebi, M. Mohammadhassani, …, M. Khorami Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer Computers and Concrete, 23 (1) (2019), pp. 61-68
Asakura and Kojima, 2003 T. Asakura, Y. Kojima Tunnel maintenance in Japan Tunn. Undergr. Space Technol., 18 (2) (2003), pp. 161-169
Ayawah, 2022 P.E.A. Ayawah, et al. A review and case study of Artificial intelligence and Machine learning methods used for ground condition prediction ahead of tunnel boring Machines Tunn. Undergr. Space Technol., 125 (2022), Article 104497
Bassan, 2016 S. Bassan Overview of traffic safety aspects and design in road tunnels IATSS Res., 40 (1) (2016), pp. 35-46
Beard, 2010 A.N. Beard Tunnel safety, risk assessment and decision-making Tunn. Undergr. Space Technol., 25 (1) (2010), pp. 91-94
Chahnasir et al., 2018 E.S. Chahnasir, Y. Zandi, M. Shariati, E. Dehghani, A. Toghroli, E.T. Mohamad, …, M. Khorami Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors Smart structures and systems, 22 (4) (2018), pp. 413-424
Cheng, 2020 J.C. Cheng, et al. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms Autom. Constr., 112 (2020), Article 103087
Cui et al., 2017 S. Cui, J.K. Nimmagadda, J.E. Baciak Backscatter radiography as a non-destructive examination tool for concrete structures 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (2017)
Deme, 2020 D. Deme A review on effect of pavement surface failure on road traffic accident American Int. J. Sci. Eng. Res., 3 (1) (2020), pp. 14-19
Ehsan Shahabi and Maryam Barghi, 2023 J.J.K. Ehsan Shahabi, Maryam Barghi Innovative Computational Approaches to Developing Sustainable Urban Infrastructure: Optimizing Green Roof Systems for Enhanced Water Management and Environmental Benefits International Journal of Civil Engineering Advancements (IJCEA), 1 (1) (2023), pp. 20-29
Emad Toghroli et al., 2023 S.M. Emad Toghroli, Fatemeh Moeini, Salman Maleki Utilizing Advanced Machine Learning Algorithms for Predicting the Fatigue Life of Steel-Reinforced Concrete Structures Under Variable Load Conditions International Journal of Civil Engineering Advancements (IJCEA), 1 (1) (2023), pp. 40-48 Google Scholar
Ericson, 2014 M. Ericson On the dynamics of fluidity and open-endedness of strategy process toward a strategy-as-practicing conceptualization Scand. J. Manag., 30 (1) (2014), pp. 1-15
Esteves, 2021 P.J. Esteves, et al. Combined effect of abrasive particle size distribution and ball material on the wear coefficient in micro-scale abrasive wear tests Wear, 476 (2021), Article 203639
Farahani, 2020 B.V. Farahani, et al. A railway tunnel structural monitoring methodology proposal for predictive maintenance Struct. Control Health Monit., 27 (8) (2020), p. e2587
Farrokh and Kim, 2018 E. Farrokh, D.Y. Kim A discussion on hard rock TBM cutter wear and cutterhead intervention interval length evaluation Tunn. Undergr. Space Technol., 81 (2018), pp. 336-357
Feng et al., 2018 D. Feng, X. Wang, B. Zhang Specific evaluation of tunnel lining multi-defects by all-refined GPR simulation method using hybrid algorithm of FETD and FDTD Constr. Build. Mater., 185 (2018), pp. 220-229
Foria, 2022 F. Foria, et al. Digital transformation in the visual inspection of heritage railways tunnels: Technology, artificial intelligence and methodology Geotechnical Engineering for the Preservation of Monuments and Historic Sites III, CRC Press (2022), pp. 337-348
Galar, 2015 D. Galar, et al. Context awareness for maintenance decision making: a diagnosis and prognosis approach Measurement, 67 (2015), pp. 137-150
Gangrade, 2022 R. Gangrade, et al. Risk-based methodology to optimize geotechnical site investigations in tunnel projects Tunn. Undergr. Space Technol., 127 (2022), Article 104589
Gbadamosi, 2021 A.-Q. Gbadamosi, et al. IoT for predictive assets monitoring and maintenance: an implementation strategy for the UK rail industry Autom. Constr., 122 (2021), Article 103486
Gharahbagh, 2013 E.A. Gharahbagh, et al. Periodic inspection of gauge cutter wear on EPB TBMs using cone penetration testing Tunn. Undergr. Space Technol., 38 (2013), pp. 279-286
Gong, 2016 Q. Gong, et al. TBM tunnelling under adverse geological conditions: an overview Tunn. Undergr. Space Technol., 57 (2016), pp. 4-17
Gong, 2021 Q. Gong, et al. Automatic subway tunnel crack detection system based on line scan camera Struct. Control Health Monit., 28 (8) (2021), p. e2776
Hallaji et al., 2022 S.M. Hallaji, Y. Fang, B.K. Winfrey Predictive maintenance of pumps in civil infrastructure: state-of-the-art, challenges and future directions Autom. Constr., 134 (2022), Article 104049
Hassanpour, 2016 J. Hassanpour, et al. Evaluation of common TBM performance prediction models based on field data from the second lot of Zagros water conveyance tunnel (ZWCT2) Tunn. Undergr. Space Technol., 52 (2016), pp. 147-156
He, 2014 X.H. He, et al. Endovascular treatment of posttraumatic carotid-cavernous fistulas and pseudoaneurysms with covered stents J. Neuroimaging, 24 (3) (2014), pp. 287-291
Hosur Shivaramaiah et al., 2022 Hosur Shivaramaiah, S. Kattimani, M. Shariati, T. Nguyen-Thoi Geometrically nonlinear behavior of two-directional functionally graded porous plates with four different materials Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236 (22) (2022), pp. 11008-11023
Hu, 2018 Y. Hu, et al. The preparation of H13 steel for TBM cutter and the performance test close to working condition Appl. Sci., 8 (10) (2018), p. 1877
He et al., 2023 He, H., Wang, S., Shen, W., & Zhang, W. (2023). The influence of pipe-jacking tunneling on deformation of existing tunnels in soft soils and the effectiveness of protection measures. Transportation Geotechnics, 42, 101061. doi: https://doi.org/10.1016/j.trgeo.2023.101061 .
Hu et al., 2024 Hu, D., Hu, Y., Yi, S., Liang, X., Li, Y.,... Yang, X. (2024). Surface Settlement Prediction of Rectangular Pipe-Jacking Tunnel Based on the Machine-Learning Algorithm. Journal of Pipeline Systems Engineering and Practice, 15(1), 04023061. doi: https://doi.org/10.1061/JPSEA2.PSENG-1453 .
Huang, 2017 H. Huang, et al. Inspection equipment study for subway tunnel defects by grey-scale image processing Adv. Eng. Inf., 32 (2017), pp. 188-201
Huang, 2018 X. Huang, et al. Application and prospect of hard rock TBM for deep roadway construction in coal mines Tunn. Undergr. Space Technol., 73 (2018), pp. 105-126
Huang et al., 2018 H.-W. Huang, Q.-T. Li, D.-M. Zhang Deep learning based image recognition for crack and leakage defects of metro shield tunnel Tunn. Undergr. Space Technol., 77 (2018), pp. 166-176
Hulipalled, 2023 P. Hulipalled, et al. Interpretable ensemble machine learning framework to predict wear rate of modified ZA-27 alloy Tribol. Int., 188 (2023), Article 108783
Hwang, 2023 E. Hwang, et al. Development of a Bispectral index score prediction model based on an interpretable deep learning algorithm Artif. Intell. Med., 143 (2023), Article 102569
In, 2015 C.-W. In, et al. A fully non-contact, air-coupled ultrasonic measurement of surface breaking cracks in concrete J. Nondestr. Eval., 34 (1) (2015), p. 272
Ismail et al., 2018 M. Ismail, M. Shariati, A.A. Awal, C.E. Chiong, E.S. Chahnasir, A. Porbar, …, M. Khorami Strengthening of bolted shear joints in industrialized ferrocement construction. Steel and Composite Structures An International Journal, 28 (6) (2018), pp. 681-690
Karhunen, 2010 K. Karhunen, et al. Electrical resistance tomography imaging of concrete Cem. Concr. Res., 40 (1) (2010), pp. 137-145
Karhunen, 2010 K. Karhunen, et al. Electrical resistance tomography for assessment of cracks in concrete ACI Mater. J., 107 (5) (2010)
Katebi et al., 2020 J. Katebi, M. Shoaei-parchin, M. Shariati, N.T. Trung, M. Khorami Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Engineering with Computers, 36 (2020), pp. 1539-1558
Konishi et al., 2016 S. Konishi, K. Kawakami, M. Taguchi Inspection method with infrared thermometry for detect void in subway tunnel lining Procedia Eng., 165 (2016), pp. 474-483
Lei, 2021 M. Lei, et al. A novel tunnel-lining crack recognition system based on digital image technology Tunn. Undergr. Space Technol., 108 (2021), Article 103724
Li, 2021 D. Li, et al. Automatic defect detection of metro tunnel surfaces using a vision-based inspection system Adv. Eng. Inf., 47 (2021), Article 101206
Li, 2023 Y. Li, et al. Analyzing the shear strength of jointed magmatic rock mass excavatability using the hybridization of metaheuristic model of ELM-SVM Acta Geotech., 18 (4) (2023), pp. 1793-1819
Li, 2023 J.-B. Li, et al. Feedback on a shared big dataset for intelligent TBM Part I: Feature extraction and machine learning methods Underground Space, 11 (2023), pp. 1-25
Lin, 2017 L. Lin, et al. Experimental study of specific matching characteristics of tunnel boring machine cutter ring properties and rock Wear, 378–379 (2017), pp. 1-10
Lin, 2020 C. Lin, et al. Forward modelling and GPR imaging in leakage detection and grouting evaluation in tunnel lining KSCE J. Civ. Eng., 24 (2020), pp. 278-294
Liu, 2005 D.-W. Liu, et al. Nondestructive testing for crack of tunnel lining using GPR J. Cent. South Univ. Technol., 12 (Suppl 1) (2005), pp. 120-124
Liu et al., 2024 Liu, H., Yue, Y., Lian, Y., Meng, X., Du, Y.,... Cui, J. (2024). Reverse-time migration of GPR data for imaging cavities behind a reinforced shield tunnel. Tunnelling and Underground Space Technology, 146, 105649. doi: https://doi.org/10.1016/j.tust.2024.105649 .
Lu, 2019 Z. Lu, et al. Automatic seepage detection in cable tunnels using infrared thermography Meas. Sci. Technol., 30 (11) (2019), Article 115902
Lyu et al., 2020 Y.-Z. Lyu, H.-H. Wang, J.-B. Gong GPR detection of tunnel lining cavities and reverse-time migration imaging Appl. Geophys. (2020), pp. 1-7
Ma, 2015 H. Ma, et al. TBM tunneling in mixed-face ground: Problems and solutions Int. J. Min. Sci. Technol., 25 (4) (2015), pp. 641-647
Ma, 2020 Z. Ma, et al. Data-driven decision-making for equipment maintenance Autom. Constr., 112 (2020), Article 103103
Mansouri, 2016 I. Mansouri, et al. Strength prediction of rotary brace damper using MLR and MARS Structural Eng. Mechanics, an Int'l J., 60 (3) (2016), pp. 471-488
Mansouri, et al., 1247 Mansouri, I., et al. (2020) Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique (Retraction of Vol 30, Pg 1247, 2019). SPRINGER VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS.
Meng et al., 2018 D. Meng, S. Lin, H. Azari Reducing thermal reflections for infrared thermography applications on tunnel liners with reflective finishes Transp. Res. Rec., 2672 (41) (2018), pp. 145-155
Mohammadhassani, 2015 M. Mohammadhassani, et al. Fuzzy modelling approach for shear strength prediction of RC deep beams Smart Struct. Syst., 16 (3) (2015), pp. 497-519
Mohammadhassani et al., 2013 M. Mohammadhassani, H. Nezamabadi-Pour, M. Suhatril, M. Shariati Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams Structural Engineering and Mechanics, An Int’l Journal, 46 (6) (2013), pp. 853-868
Mohammadhassani et al., 2014 M. Mohammadhassani, H. Nezamabadi-Pour, M. Suhatril, M. Shariati An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups Smart Struct Syst Int J, 14 (5) (2014), pp. 785-809
Mohammad, 2023 Mohammad M Arabnejad K, M.T.F., Advanced Computational Techniques for the Assessment of Wind Load Impact on High-Rise Building Structures. International Journal of Civil Engineering Advancements (IJCEA), 2023. 1(1): p. 49-57.
Moradi, 2021 P. Moradi, et al. Ilam tunnels inspection, maintenance, and rehabilitation: a case study Tunn. Undergr. Space Technol., 110 (2021), Article 103814
Morteza Shariati and Asma Mohammadi Pour, 2023 M.H. Morteza Shariati, Asma Mohammadi Pour Evaluating the Use of Recycled Glass in Concrete Mixtures: A Comprehensive Strength and Durability Analysis Using Neural Networks for Mix Ratio Optimization International Journal of Civil Engineering Advancements (IJCEA), 1 (1) (2023), pp. 30-39
Mostafa and Sousa, 2024 S. Mostafa, R.L. Sousa Enhancing ground classification models for TBM tunneling: detecting label errors in datasets Comput. Geotech., 170 (2024), Article 106301
Naghipour et al., 2020 M. Naghipour, K.M. Niak, M. Shariati, A. Toghroli Effect of progressive shear punch of a foundation on a reinforced concrete building behavior. Steel and Composite Structures An International Journal, 35 (2) (2020), pp. 279-294
Naghipour et al., 2020 M. Naghipour, G. Yousofizinsaz, M. Shariati Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines Steel Compos. Struct, 34 (3) (2020), pp. 347-359
Naveen Kumar et al., 2023 Naveen Kumar, S. Kattimani, F.D. Marques, T. Nguyen-Thoi, M. Shariati Geometrically nonlinear study of functionally graded saturated porous plates based on refined shear deformation plate theory and biot’s theory International Journal of Structural Stability and Dynamics, 23 (02) (2023), p. 2350013
Peng et al., 2022 J. Peng, G. Yan, Y. Zandi, A.S. Agdas, T. Pourrostam, I.E. El-Arab, …, M.A. Khadimallah Prediction and optimization of the flexural behavior of corroded concrete beams using adaptive neuro fuzzy inference system Structures, (Vol. 43,, Elsevier (2022, September), pp. 200-208
Petković et al., 2022 B. Petković, Y. Zandi, A.S. Agdas, I. Nikolić, N. Denić, N. Kojić, …, A. Khan Adaptive neuro fuzzy evaluation of energy and non‐energy material productivity impact on sustainable development based on circular economy and gross domestic product Business Strategy and the Environment, 31 (1) (2022), pp. 129-144
Quanhong, 2004 G. Quanhong Application of TBM in flat cavern construction Coal Eng., 6 (2004), pp. 27-28
Razavian et al., 2020 L. Razavian, M. Naghipour, M. Shariati, M. Safa Experimental study of the behavior of composite timber columns confined with hollow rectangular steel sections under compression Structural Engineering and Mechanics, An Int’l Journal, 74 (1) (2020), pp. 145-156
Rostami, 2016 J. Rostami Performance prediction of hard rock Tunnel Boring Machines (TBMs) in difficult ground Tunn. Undergr. Space Technol., 57 (2016), pp. 173-182
Safa, 2020 M. Safa, et al. Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes Physica A, 550 (2020), Article 124046
Safa and Kachitvichyanukul, 2019 M. Safa, V. Kachitvichyanukul Moment rotation prediction of precast beam to column connections using extreme learning machine Structural Eng. Mechanics, An Int'l J., 70 (5) (2019), pp. 639-647
Safa and Kachitvichyanukul, 2019 M. Safa, V. Kachitvichyanukul Moment rotation prediction of precast beam to column connections using extreme learning machine Structural Engineering and Mechanics, An Int’l Journal, 70 (5) (2019), pp. 639-647
Safa et al., 2019 M. Safa, A. Maleka, M.A. Arjomand, M. Khorami, M. Shariati Strain rate effects on soil-geosynthetic interaction in fine-grained soil Geomechanics and Engineering, 19 (6) (2019), pp. 533-542
Safa et al., 2016 M. Safa, M. Shariati, Z. Ibrahim, A. Toghroli, S.B. Baharom, N.M. Nor, D. Petković Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel and Composite Structures An International Journal, 21 (3) (2016), pp. 679-688
Sedghi et al., 2018 Y. Sedghi, Y. Zandi, M. Shariati, E. Ahmadi, V.M. Azar, A. Toghroli, …, K. Wakil Application of ANFIS technique on performance of C and L shaped angle shear connectors Smart structures and systems, 22 (3) (2018), pp. 335-340
Shah et al., 2015 S.N.R. Shah, N.R. Sulong, M. Shariati, M.Z. Jumaat Steel rack connections: identification of most influential factors and a comparison of stiffness design methods PloS one, 10 (10) (2015), Article e0139422
Shariati et al., 2024 M. Shariati, M. Afrazi, H. Kamyab, S. Rouhanifar, E. Toghroli, M. Safa, …, H. Afrazi A state of the art review on geotechnical reinforcement with end life tires Global Journal of Environmental Science and Management, 10 (1) (2024), pp. 385-404
Shariati et al., 2019 M. Shariati, S.M. Azar, M.A. Arjomand, H.S. Tehrani, M. Daei, M. Safa Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils Geomechanics and Engineering, 19 (6) (2019), pp. 473-484
Shariati et al., 2020 M. Shariati, S.M. Azar, M.A. Arjomand, H.S. Tehrani, M. Daei, M. Safa Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load Geomechanics and Engineering, 20 (2) (2020), pp. 87-101
Shariati et al., 2020 M. Shariati, M. Ghorbani, M. Naghipour, N. Alinejad, A. Toghroli The effect of RBS connection on energy absorption in tall buildings with braced tube frame system. Steel and Composite Structures An International Journal, 34 (3) (2020), pp. 393-407
Shariati et al., 2020 M. Shariati, M. Grayeli, A. Shariati, M. Naghipour Performance of composite frame consisting of steel beams and concrete filled tubes under fire loading. Steel and Composite Structures An International Journal, 36 (5) (2020), pp. 587-602
Shariati et al., 2020 M. Shariati, M.S. Mafipour, J.H. Haido, S.T. Yousif, A. Toghroli, N.T. Trung, A. Shariati Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) Steel Compos Struct, 34 (1) (2020), p. 155
Shariati et al., 2020 M. Shariati, M.S. Mafipour, P. Mehrabi, M. Ahmadi, K. Wakil, N.T. Trung, A. Toghroli Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm) Smart Structures and Systems, An International Journal, 25 (2) (2020), pp. 183-195
Shariati et al., 2019 M. Shariati, M.S. Mafipour, P. Mehrabi, A. Bahadori, Y. Zandi, M.N. Salih, …, S. Poi-Ngian Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete Applied sciences, 9 (24) (2019), p. 5534
Shariati et al., 2021 M. Shariati, M.S. Mafipour, P. Mehrabi, A. Shariati, A. Toghroli, N.T. Trung, M.N. Salih A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques. Engineering with Computers, 37 (2021), pp. 2089-2109
Shariati et al., 2019 M. Shariati, M.S. Mafipour, P. Mehrabi, Y. Zandi, D. Dehghani, A. Bahadori, …, S. Poi-Ngian Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures Steel Compos. Struct, 33 (3) (2019), pp. 319-332
Shariati et al., 2024 M. Shariati, M. Raeispour, M. Naghipour, H. Kamyab, A. Memarzadeh, M. Nematzadeh, A. Toghroli Flexural behavior analysis of double honeycomb steel composite encased concrete beams: An integrated experimental and finite element study Case Studies in Construction Materials, 20 (2024), Article e03299
Shariati et al., 2019 M. Shariati, N.T. Trung, K. Wakil, P. Mehrabi, M. Safa, M. Khorami Moment-rotation estimation of steel rack connection using extreme learning machine Steel and Composite Structures, 31 (5) (2019), pp. 427-435 https://doi.org/10.12989/SCS.2019.31.5.427
Shi et al., 2023 M. Shi, W. Hu, M. Li, J. Zhang, X. Song, …, W. Sun Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine Mechanical Systems and Signal Processing, 188 (2023), p. 110022 https://doi.org/10.1016/j.ymssp.2022.110022
Shariati et al., 2022 Shariati, M., Mafipour, M. S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N. T., & Shariati, A. (2022). A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Engineering with Computers, 1-23.
Sjödin et al., 2023 D. Sjödin, V. Parida, M. Kohtamäki Artificial intelligence enabling circular business model innovation in digital servitization: Conceptualizing dynamic capabilities, AI capacities, business models and effects Technol. Forecast. Soc. Chang., 197 (2023), Article 122903
Su, 2020 W. Su, et al. Analysis and prediction of TBM disc cutter wear when tunneling in hard rock strata: a case study of a metro tunnel excavation in Shenzhen, China Wear, 446 (2020), Article 203190
Tian, 2023 Z. Tian, et al. Load extraction from actual operation data for data-driven ultra-short-term room air-conditioning load prediction Energ. Buildings, 296 (2023), Article 113348
Tiana, 2023 Tiana T Thiagi, S.J., Comprehensive Predictive Modeling of Earthquake Resilience in Multi-Story Buildings Utilizing Advanced Machine Learning Techniques. International Journal of Civil Engineering Advancements (IJCEA), 2023. 1(1): p. 10-19.
Toghroli et al., 2014 A. Toghroli, M. Mohammadhassani, M. Suhatril, M. Shariati, Z. Ibrahim Prediction of shear capacity of channel shear connectors using the ANFIS model Steel Compos Struct, 17 (5) (2014), pp. 623-639
Toghroli et al., 2020 A. Toghroli, M.S. Nasirianfar, A. Shariati, M. Khorami, M. Paknahad, M. Ahmadi, …, Y. Zandi Analysis of extended end plate connection equipped with SMA bolts using component method. Steel and Composite Structures An International Journal, 36 (2) (2020), pp. 213-228
Wang, 2015 Q. Wang, et al. Phm and active maintenance for high-speed railway traction power supply system J. Southwest Jiaotong University, 5 (2015), p. 026
Wang, 2017 L. Wang, et al. Development of a prediction model for the wear evolution of disc cutters on rock TBM cutterhead Tunn. Undergr. Space Technol., 67 (2017), pp. 147-157
Wang, 2021 Q. Wang, et al. Tunnel lining crack recognition based on improved multiscale retinex and sobel edge detection Math. Probl. Eng., 2021 (2021), Article 9969464
Wei et al., 2018 X. Wei, M. Shariati, Y. Zandi, S. Pei, Z. Jin, S. Gharachurlu, …, M. Khorami Distribution of shear force in perforated shear connectors. Steel and Composite Structures An International Journal, 27 (3) (2018), pp. 389-399
Xiang, 2013 L. Xiang, et al. GPR evaluation of the Damaoshan highway tunnel: a case study NDT and E Int., 59 (2013), pp. 68-76
Xue, 2020 Y. Xue, et al. Deep learning-based automatic recognition of water leakage area in shield tunnel lining Tunn. Undergr. Space Technol., 104 (2020), Article 103524
Xue and Li, 2018 Y. Xue, Y. Li A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects Comput. Aided Civ. Inf. Eng., 33 (8) (2018), pp. 638-654
Yazdani et al., 2021 M. Yazdani, K. Kabirifar, B.E. Frimpong, M. Shariati, M. Mirmozaffari, A. Boskabadi Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia Journal of Cleaner Production, 280 (2021), p. 124138
Yousef Zandi and Maryam Ramezani, 2023 A.S.A. Yousef Zandi, Maryam Ramezani Advanced Integration of IoT and Neural Networks for Real-Time Structural Health Monitoring and Assessment of Bridges International Journal of Civil Engineering Advancements (IJCEA), 1 (1) (2023), pp. 1-9
Yu, 2018 P. Yu, et al. Water leakage diagnosis in metro tunnels by intergration of laser point cloud and infrared thermal imaging Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci., 42 (2018), pp. 2167-2171
Yu and Mooney, 2023 H. Yu, M. Mooney Characterizing the as-encountered ground condition with tunnel boring machine data using semi-supervised learning Comput. Geotech., 154 (2023), Article 105159
Yu et al., 2023 Yu, S., Zhao, C., Song, L., Li, Y., & Du, Y. (2023). Understanding traffic bottlenecks of long freeway tunnels based on a novel location-dependent lighting-related car-following model. Tunnelling and Underground Space Technology, 136, 105098. doi: https://doi.org/10.1016/j.tust.2023.105098 .
Zainah and Shahaboddin, 1801 T.A.S.M.I. Zainah, S.M.S.M.S. Shahaboddin Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam Journal of Intelligent Manufacturing, 29 (8) (1801), p. 1793
Zhang, 2018 X. Zhang, et al. Experimental study on wear of TBM disc cutter rings with different kinds of hardness Tunn. Undergr. Space Technol., 82 (2018), pp. 346-357
Zhang, 2021 L. Zhang, et al. Estimating long-term impacts of tunnel infrastructure development on urban sustainability using granular computing Appl. Soft Comput., 113 (2021), Article 107932
Zhang and Wang, 2023 L. Zhang, J. Wang Intelligent safe operation and maintenance of oil and gas production systems: connotations and key technologies Nat. Gas Ind. B, 10 (3) (2023), pp. 293-303
Zhang et al., 2021 X. Zhang, X. Wu, W. Broere Impact of subsoil spatial variability on deformations of immersed tunnel Geotechnical Aspects of Underground Construction in Soft Ground, CRC Press (2021), pp. 738-745
Zhao, 2021 S. Zhao, et al. Deep learning-based classification and instance segmentation of leakage-area and scaling images of shield tunnel linings Struct. Control Health Monit., 28 (6) (2021), p. e2732
Zhao et al., 2023 N. Zhao, D. Li, S. Gu, W. Du Analytical fragility relation for buried cast iron pipelines with lead-caulked joints based on machine learning algorithms Earthquake Spectra, 40 (1) (2023), pp. 566-583 https://doi.org/10.1177/87552930231209195
Zhong, 2023 Y. Zhong, et al. DDI-GCN: drug-drug interaction prediction via explainable graph convolutional networks Artif. Intell. Med., 144 (2023), Article 102640
Zhou, 2023 C. Zhou, et al. Deep learning technologies for shield tunneling: challenges and opportunities Autom. Constr., 154 (2023), Article 104982
dc.relation.citationendpage.none.fl_str_mv 16
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 173
dc.rights.eng.fl_str_mv © 2024 Published by Elsevier Ltd.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2024 Published by Elsevier Ltd.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 17 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv United Kingdom
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0266352X24004683?pes=vor
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/59c282a0-95c5-45fd-b432-e41a8ff09a88/download
https://repositorio.cuc.edu.co/bitstreams/c006ef4d-0b86-4f77-bcde-14cb97489b92/download
https://repositorio.cuc.edu.co/bitstreams/cfe7b31f-88cc-4e48-90cf-ee11d18c4b0f/download
https://repositorio.cuc.edu.co/bitstreams/c16d1e6c-2cea-4ed2-837b-875e1d2eb9bb/download
bitstream.checksum.fl_str_mv 70a97632a38665d74e899db747814bba
73a5432e0b76442b22b026844140d683
6ccc015dada2f6d45ad12f2443310d5c
40f58f0461df6f9bba5f846e57430a35
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760779447238656
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2024 Published by Elsevier Ltd.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfZou, XiaopingZeng , JieYan, GongxingMohammed, Khidhair JasimAbbas, MohamedAbdullah, NermeenElattar, SamiaAmine Khadimallah, MohamedToghroli, SanaEscorcia-Gutierrez, José2024-09-23T20:39:11Z2026-092024-09-23T20:39:11Z2024-09Xiaoping Zou, Jie Zeng, Gongxing Yan, Khidhair Jasim Mohammed, Mohamed Abbas, Nermeen Abdullah, Samia Elattar, Mohamed Amine Khadimallah, Sana Toghroli, José Escorcia-Gutierrez, Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure, Computers and Geotechnics, Volume 173, 2024, 106532, ISSN 0266-352X, https://doi.org/10.1016/j.compgeo.2024.106532.0266-352Xhttps://hdl.handle.net/11323/1335710.1016/j.compgeo.2024.106532.1873-7633Urban tunnel infrastructure, crucial for societal well-being, depends on reliable Tunnel Electromechanical Equipment (TEE), including ventilation, drainage, and lighting systems. A key challenge is these systems’ proactive and efficient maintenance, particularly under limited resources. This study introduces a novel deep learning-based multi-output prediction model developed to enhance the understanding and predictive accuracy Tunnel Boring Machine (TBM) performance, with a specific focus on machine wear and tear (y1) and adapting to ground conditions and geotechnical data (y2) in complex underground environments. The model employs an advanced deep learning approach, att-GCN, which innovatively integrates Graph Convolutional Networks (GCN) with a scaled dot-product attention mechanism. This combination notably improves model performance and interpretability. Experimental results indicate that att-GCN model achieves a Mean Absolute Percentage Error (MAPE) of 17.1% for y1 and 16.8% for y2, outperforming other established algorithms, including the Deep Neural Network (DNN)-Genetic algorithm hybrid. Furthermore, an online learning variant of att-GCN was developed that integrates real-time data during tunneling operations. This version demonstrated enhanced predictive accuracy, with a MAPE of 8.7% for y1 and 8.1% for y2. Applying att-GCN for real-time TBM performance estimation based on dynamic monitoring data offers significant insights for intelligent TBM control, improving construction efficiency and reliability.17 páginasapplication/pdfengElsevier B.V.United Kingdomhttps://www.sciencedirect.com/science/article/pii/S0266352X24004683?pes=vorAdvancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructureArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Computers and GeotechnicsAfshani, 2019 A. Afshani, et al. Study of infrared thermal application for detecting defects within tunnel lining Tunn. Undergr. Space Technol., 86 (2019), pp. 186-197Ansarian and Mahmoodabadi, 2023 A. Ansarian, M.J. Mahmoodabadi Multi-objective optimal design of a fuzzy adaptive robust fractional-order PID controller for a nonlinear unmanned flying system Aerosp. Sci. Technol., 141 (2023), Article 108541Arani et al., 2019 K.S. Arani, Y. Zandi, B.T. Pham, M.A. Mu’azu, J. Katebi, M. Mohammadhassani, …, M. Khorami Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer Computers and Concrete, 23 (1) (2019), pp. 61-68Asakura and Kojima, 2003 T. Asakura, Y. Kojima Tunnel maintenance in Japan Tunn. Undergr. Space Technol., 18 (2) (2003), pp. 161-169Ayawah, 2022 P.E.A. Ayawah, et al. A review and case study of Artificial intelligence and Machine learning methods used for ground condition prediction ahead of tunnel boring Machines Tunn. Undergr. Space Technol., 125 (2022), Article 104497Bassan, 2016 S. Bassan Overview of traffic safety aspects and design in road tunnels IATSS Res., 40 (1) (2016), pp. 35-46Beard, 2010 A.N. Beard Tunnel safety, risk assessment and decision-making Tunn. Undergr. Space Technol., 25 (1) (2010), pp. 91-94Chahnasir et al., 2018 E.S. Chahnasir, Y. Zandi, M. Shariati, E. Dehghani, A. Toghroli, E.T. Mohamad, …, M. Khorami Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors Smart structures and systems, 22 (4) (2018), pp. 413-424Cheng, 2020 J.C. Cheng, et al. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms Autom. Constr., 112 (2020), Article 103087Cui et al., 2017 S. Cui, J.K. Nimmagadda, J.E. Baciak Backscatter radiography as a non-destructive examination tool for concrete structures 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (2017)Deme, 2020 D. Deme A review on effect of pavement surface failure on road traffic accident American Int. J. Sci. Eng. Res., 3 (1) (2020), pp. 14-19Ehsan Shahabi and Maryam Barghi, 2023 J.J.K. Ehsan Shahabi, Maryam Barghi Innovative Computational Approaches to Developing Sustainable Urban Infrastructure: Optimizing Green Roof Systems for Enhanced Water Management and Environmental Benefits International Journal of Civil Engineering Advancements (IJCEA), 1 (1) (2023), pp. 20-29Emad Toghroli et al., 2023 S.M. Emad Toghroli, Fatemeh Moeini, Salman Maleki Utilizing Advanced Machine Learning Algorithms for Predicting the Fatigue Life of Steel-Reinforced Concrete Structures Under Variable Load Conditions International Journal of Civil Engineering Advancements (IJCEA), 1 (1) (2023), pp. 40-48 Google ScholarEricson, 2014 M. Ericson On the dynamics of fluidity and open-endedness of strategy process toward a strategy-as-practicing conceptualization Scand. J. Manag., 30 (1) (2014), pp. 1-15Esteves, 2021 P.J. Esteves, et al. Combined effect of abrasive particle size distribution and ball material on the wear coefficient in micro-scale abrasive wear tests Wear, 476 (2021), Article 203639Farahani, 2020 B.V. Farahani, et al. A railway tunnel structural monitoring methodology proposal for predictive maintenance Struct. Control Health Monit., 27 (8) (2020), p. e2587Farrokh and Kim, 2018 E. Farrokh, D.Y. Kim A discussion on hard rock TBM cutter wear and cutterhead intervention interval length evaluation Tunn. Undergr. Space Technol., 81 (2018), pp. 336-357Feng et al., 2018 D. Feng, X. Wang, B. Zhang Specific evaluation of tunnel lining multi-defects by all-refined GPR simulation method using hybrid algorithm of FETD and FDTD Constr. Build. Mater., 185 (2018), pp. 220-229Foria, 2022 F. Foria, et al. Digital transformation in the visual inspection of heritage railways tunnels: Technology, artificial intelligence and methodology Geotechnical Engineering for the Preservation of Monuments and Historic Sites III, CRC Press (2022), pp. 337-348Galar, 2015 D. Galar, et al. Context awareness for maintenance decision making: a diagnosis and prognosis approach Measurement, 67 (2015), pp. 137-150Gangrade, 2022 R. Gangrade, et al. Risk-based methodology to optimize geotechnical site investigations in tunnel projects Tunn. Undergr. Space Technol., 127 (2022), Article 104589Gbadamosi, 2021 A.-Q. Gbadamosi, et al. IoT for predictive assets monitoring and maintenance: an implementation strategy for the UK rail industry Autom. Constr., 122 (2021), Article 103486Gharahbagh, 2013 E.A. Gharahbagh, et al. Periodic inspection of gauge cutter wear on EPB TBMs using cone penetration testing Tunn. Undergr. Space Technol., 38 (2013), pp. 279-286Gong, 2016 Q. Gong, et al. TBM tunnelling under adverse geological conditions: an overview Tunn. Undergr. Space Technol., 57 (2016), pp. 4-17Gong, 2021 Q. Gong, et al. Automatic subway tunnel crack detection system based on line scan camera Struct. Control Health Monit., 28 (8) (2021), p. e2776Hallaji et al., 2022 S.M. Hallaji, Y. Fang, B.K. Winfrey Predictive maintenance of pumps in civil infrastructure: state-of-the-art, challenges and future directions Autom. Constr., 134 (2022), Article 104049Hassanpour, 2016 J. Hassanpour, et al. Evaluation of common TBM performance prediction models based on field data from the second lot of Zagros water conveyance tunnel (ZWCT2) Tunn. Undergr. Space Technol., 52 (2016), pp. 147-156He, 2014 X.H. He, et al. Endovascular treatment of posttraumatic carotid-cavernous fistulas and pseudoaneurysms with covered stents J. Neuroimaging, 24 (3) (2014), pp. 287-291Hosur Shivaramaiah et al., 2022 Hosur Shivaramaiah, S. Kattimani, M. Shariati, T. Nguyen-Thoi Geometrically nonlinear behavior of two-directional functionally graded porous plates with four different materials Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236 (22) (2022), pp. 11008-11023Hu, 2018 Y. Hu, et al. The preparation of H13 steel for TBM cutter and the performance test close to working condition Appl. Sci., 8 (10) (2018), p. 1877He et al., 2023 He, H., Wang, S., Shen, W., & Zhang, W. (2023). The influence of pipe-jacking tunneling on deformation of existing tunnels in soft soils and the effectiveness of protection measures. Transportation Geotechnics, 42, 101061. doi: https://doi.org/10.1016/j.trgeo.2023.101061 .Hu et al., 2024 Hu, D., Hu, Y., Yi, S., Liang, X., Li, Y.,... Yang, X. (2024). Surface Settlement Prediction of Rectangular Pipe-Jacking Tunnel Based on the Machine-Learning Algorithm. Journal of Pipeline Systems Engineering and Practice, 15(1), 04023061. doi: https://doi.org/10.1061/JPSEA2.PSENG-1453 .Huang, 2017 H. Huang, et al. Inspection equipment study for subway tunnel defects by grey-scale image processing Adv. Eng. Inf., 32 (2017), pp. 188-201Huang, 2018 X. Huang, et al. Application and prospect of hard rock TBM for deep roadway construction in coal mines Tunn. Undergr. Space Technol., 73 (2018), pp. 105-126Huang et al., 2018 H.-W. Huang, Q.-T. Li, D.-M. Zhang Deep learning based image recognition for crack and leakage defects of metro shield tunnel Tunn. Undergr. Space Technol., 77 (2018), pp. 166-176Hulipalled, 2023 P. Hulipalled, et al. Interpretable ensemble machine learning framework to predict wear rate of modified ZA-27 alloy Tribol. Int., 188 (2023), Article 108783Hwang, 2023 E. Hwang, et al. Development of a Bispectral index score prediction model based on an interpretable deep learning algorithm Artif. Intell. Med., 143 (2023), Article 102569In, 2015 C.-W. In, et al. A fully non-contact, air-coupled ultrasonic measurement of surface breaking cracks in concrete J. Nondestr. Eval., 34 (1) (2015), p. 272Ismail et al., 2018 M. Ismail, M. Shariati, A.A. Awal, C.E. Chiong, E.S. Chahnasir, A. Porbar, …, M. Khorami Strengthening of bolted shear joints in industrialized ferrocement construction. Steel and Composite Structures An International Journal, 28 (6) (2018), pp. 681-690Karhunen, 2010 K. Karhunen, et al. Electrical resistance tomography imaging of concrete Cem. Concr. Res., 40 (1) (2010), pp. 137-145Karhunen, 2010 K. Karhunen, et al. Electrical resistance tomography for assessment of cracks in concrete ACI Mater. J., 107 (5) (2010)Katebi et al., 2020 J. Katebi, M. Shoaei-parchin, M. Shariati, N.T. Trung, M. Khorami Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Engineering with Computers, 36 (2020), pp. 1539-1558Konishi et al., 2016 S. Konishi, K. Kawakami, M. Taguchi Inspection method with infrared thermometry for detect void in subway tunnel lining Procedia Eng., 165 (2016), pp. 474-483Lei, 2021 M. Lei, et al. A novel tunnel-lining crack recognition system based on digital image technology Tunn. Undergr. Space Technol., 108 (2021), Article 103724Li, 2021 D. Li, et al. Automatic defect detection of metro tunnel surfaces using a vision-based inspection system Adv. Eng. Inf., 47 (2021), Article 101206Li, 2023 Y. Li, et al. Analyzing the shear strength of jointed magmatic rock mass excavatability using the hybridization of metaheuristic model of ELM-SVM Acta Geotech., 18 (4) (2023), pp. 1793-1819Li, 2023 J.-B. Li, et al. Feedback on a shared big dataset for intelligent TBM Part I: Feature extraction and machine learning methods Underground Space, 11 (2023), pp. 1-25Lin, 2017 L. Lin, et al. Experimental study of specific matching characteristics of tunnel boring machine cutter ring properties and rock Wear, 378–379 (2017), pp. 1-10Lin, 2020 C. Lin, et al. Forward modelling and GPR imaging in leakage detection and grouting evaluation in tunnel lining KSCE J. Civ. Eng., 24 (2020), pp. 278-294Liu, 2005 D.-W. Liu, et al. Nondestructive testing for crack of tunnel lining using GPR J. Cent. South Univ. Technol., 12 (Suppl 1) (2005), pp. 120-124Liu et al., 2024 Liu, H., Yue, Y., Lian, Y., Meng, X., Du, Y.,... Cui, J. (2024). Reverse-time migration of GPR data for imaging cavities behind a reinforced shield tunnel. Tunnelling and Underground Space Technology, 146, 105649. doi: https://doi.org/10.1016/j.tust.2024.105649 .Lu, 2019 Z. Lu, et al. Automatic seepage detection in cable tunnels using infrared thermography Meas. Sci. Technol., 30 (11) (2019), Article 115902Lyu et al., 2020 Y.-Z. Lyu, H.-H. Wang, J.-B. Gong GPR detection of tunnel lining cavities and reverse-time migration imaging Appl. Geophys. (2020), pp. 1-7Ma, 2015 H. Ma, et al. TBM tunneling in mixed-face ground: Problems and solutions Int. J. Min. Sci. Technol., 25 (4) (2015), pp. 641-647Ma, 2020 Z. Ma, et al. Data-driven decision-making for equipment maintenance Autom. Constr., 112 (2020), Article 103103Mansouri, 2016 I. Mansouri, et al. Strength prediction of rotary brace damper using MLR and MARS Structural Eng. Mechanics, an Int'l J., 60 (3) (2016), pp. 471-488Mansouri, et al., 1247 Mansouri, I., et al. (2020) Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique (Retraction of Vol 30, Pg 1247, 2019). SPRINGER VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS.Meng et al., 2018 D. Meng, S. Lin, H. Azari Reducing thermal reflections for infrared thermography applications on tunnel liners with reflective finishes Transp. Res. Rec., 2672 (41) (2018), pp. 145-155Mohammadhassani, 2015 M. Mohammadhassani, et al. Fuzzy modelling approach for shear strength prediction of RC deep beams Smart Struct. Syst., 16 (3) (2015), pp. 497-519Mohammadhassani et al., 2013 M. Mohammadhassani, H. Nezamabadi-Pour, M. Suhatril, M. Shariati Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams Structural Engineering and Mechanics, An Int’l Journal, 46 (6) (2013), pp. 853-868Mohammadhassani et al., 2014 M. Mohammadhassani, H. Nezamabadi-Pour, M. Suhatril, M. Shariati An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups Smart Struct Syst Int J, 14 (5) (2014), pp. 785-809Mohammad, 2023 Mohammad M Arabnejad K, M.T.F., Advanced Computational Techniques for the Assessment of Wind Load Impact on High-Rise Building Structures. International Journal of Civil Engineering Advancements (IJCEA), 2023. 1(1): p. 49-57.Moradi, 2021 P. Moradi, et al. Ilam tunnels inspection, maintenance, and rehabilitation: a case study Tunn. Undergr. Space Technol., 110 (2021), Article 103814Morteza Shariati and Asma Mohammadi Pour, 2023 M.H. Morteza Shariati, Asma Mohammadi Pour Evaluating the Use of Recycled Glass in Concrete Mixtures: A Comprehensive Strength and Durability Analysis Using Neural Networks for Mix Ratio Optimization International Journal of Civil Engineering Advancements (IJCEA), 1 (1) (2023), pp. 30-39Mostafa and Sousa, 2024 S. Mostafa, R.L. Sousa Enhancing ground classification models for TBM tunneling: detecting label errors in datasets Comput. Geotech., 170 (2024), Article 106301Naghipour et al., 2020 M. Naghipour, K.M. Niak, M. Shariati, A. Toghroli Effect of progressive shear punch of a foundation on a reinforced concrete building behavior. Steel and Composite Structures An International Journal, 35 (2) (2020), pp. 279-294Naghipour et al., 2020 M. Naghipour, G. Yousofizinsaz, M. Shariati Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines Steel Compos. Struct, 34 (3) (2020), pp. 347-359Naveen Kumar et al., 2023 Naveen Kumar, S. Kattimani, F.D. Marques, T. Nguyen-Thoi, M. Shariati Geometrically nonlinear study of functionally graded saturated porous plates based on refined shear deformation plate theory and biot’s theory International Journal of Structural Stability and Dynamics, 23 (02) (2023), p. 2350013Peng et al., 2022 J. Peng, G. Yan, Y. Zandi, A.S. Agdas, T. Pourrostam, I.E. El-Arab, …, M.A. Khadimallah Prediction and optimization of the flexural behavior of corroded concrete beams using adaptive neuro fuzzy inference system Structures, (Vol. 43,, Elsevier (2022, September), pp. 200-208Petković et al., 2022 B. Petković, Y. Zandi, A.S. Agdas, I. Nikolić, N. Denić, N. Kojić, …, A. Khan Adaptive neuro fuzzy evaluation of energy and non‐energy material productivity impact on sustainable development based on circular economy and gross domestic product Business Strategy and the Environment, 31 (1) (2022), pp. 129-144Quanhong, 2004 G. Quanhong Application of TBM in flat cavern construction Coal Eng., 6 (2004), pp. 27-28Razavian et al., 2020 L. Razavian, M. Naghipour, M. Shariati, M. Safa Experimental study of the behavior of composite timber columns confined with hollow rectangular steel sections under compression Structural Engineering and Mechanics, An Int’l Journal, 74 (1) (2020), pp. 145-156Rostami, 2016 J. Rostami Performance prediction of hard rock Tunnel Boring Machines (TBMs) in difficult ground Tunn. Undergr. Space Technol., 57 (2016), pp. 173-182Safa, 2020 M. Safa, et al. Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes Physica A, 550 (2020), Article 124046Safa and Kachitvichyanukul, 2019 M. Safa, V. Kachitvichyanukul Moment rotation prediction of precast beam to column connections using extreme learning machine Structural Eng. Mechanics, An Int'l J., 70 (5) (2019), pp. 639-647Safa and Kachitvichyanukul, 2019 M. Safa, V. Kachitvichyanukul Moment rotation prediction of precast beam to column connections using extreme learning machine Structural Engineering and Mechanics, An Int’l Journal, 70 (5) (2019), pp. 639-647Safa et al., 2019 M. Safa, A. Maleka, M.A. Arjomand, M. Khorami, M. Shariati Strain rate effects on soil-geosynthetic interaction in fine-grained soil Geomechanics and Engineering, 19 (6) (2019), pp. 533-542Safa et al., 2016 M. Safa, M. Shariati, Z. Ibrahim, A. Toghroli, S.B. Baharom, N.M. Nor, D. Petković Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel and Composite Structures An International Journal, 21 (3) (2016), pp. 679-688Sedghi et al., 2018 Y. Sedghi, Y. Zandi, M. Shariati, E. Ahmadi, V.M. Azar, A. Toghroli, …, K. Wakil Application of ANFIS technique on performance of C and L shaped angle shear connectors Smart structures and systems, 22 (3) (2018), pp. 335-340Shah et al., 2015 S.N.R. Shah, N.R. Sulong, M. Shariati, M.Z. Jumaat Steel rack connections: identification of most influential factors and a comparison of stiffness design methods PloS one, 10 (10) (2015), Article e0139422Shariati et al., 2024 M. Shariati, M. Afrazi, H. Kamyab, S. Rouhanifar, E. Toghroli, M. Safa, …, H. Afrazi A state of the art review on geotechnical reinforcement with end life tires Global Journal of Environmental Science and Management, 10 (1) (2024), pp. 385-404Shariati et al., 2019 M. Shariati, S.M. Azar, M.A. Arjomand, H.S. Tehrani, M. Daei, M. Safa Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils Geomechanics and Engineering, 19 (6) (2019), pp. 473-484Shariati et al., 2020 M. Shariati, S.M. Azar, M.A. Arjomand, H.S. Tehrani, M. Daei, M. Safa Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load Geomechanics and Engineering, 20 (2) (2020), pp. 87-101Shariati et al., 2020 M. Shariati, M. Ghorbani, M. Naghipour, N. Alinejad, A. Toghroli The effect of RBS connection on energy absorption in tall buildings with braced tube frame system. Steel and Composite Structures An International Journal, 34 (3) (2020), pp. 393-407Shariati et al., 2020 M. Shariati, M. Grayeli, A. Shariati, M. Naghipour Performance of composite frame consisting of steel beams and concrete filled tubes under fire loading. Steel and Composite Structures An International Journal, 36 (5) (2020), pp. 587-602Shariati et al., 2020 M. Shariati, M.S. Mafipour, J.H. Haido, S.T. Yousif, A. Toghroli, N.T. Trung, A. Shariati Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) Steel Compos Struct, 34 (1) (2020), p. 155Shariati et al., 2020 M. Shariati, M.S. Mafipour, P. Mehrabi, M. Ahmadi, K. Wakil, N.T. Trung, A. Toghroli Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm) Smart Structures and Systems, An International Journal, 25 (2) (2020), pp. 183-195Shariati et al., 2019 M. Shariati, M.S. Mafipour, P. Mehrabi, A. Bahadori, Y. Zandi, M.N. Salih, …, S. Poi-Ngian Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete Applied sciences, 9 (24) (2019), p. 5534Shariati et al., 2021 M. Shariati, M.S. Mafipour, P. Mehrabi, A. Shariati, A. Toghroli, N.T. Trung, M.N. Salih A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques. Engineering with Computers, 37 (2021), pp. 2089-2109Shariati et al., 2019 M. Shariati, M.S. Mafipour, P. Mehrabi, Y. Zandi, D. Dehghani, A. Bahadori, …, S. Poi-Ngian Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures Steel Compos. Struct, 33 (3) (2019), pp. 319-332Shariati et al., 2024 M. Shariati, M. Raeispour, M. Naghipour, H. Kamyab, A. Memarzadeh, M. Nematzadeh, A. Toghroli Flexural behavior analysis of double honeycomb steel composite encased concrete beams: An integrated experimental and finite element study Case Studies in Construction Materials, 20 (2024), Article e03299Shariati et al., 2019 M. Shariati, N.T. Trung, K. Wakil, P. Mehrabi, M. Safa, M. Khorami Moment-rotation estimation of steel rack connection using extreme learning machine Steel and Composite Structures, 31 (5) (2019), pp. 427-435 https://doi.org/10.12989/SCS.2019.31.5.427Shi et al., 2023 M. Shi, W. Hu, M. Li, J. Zhang, X. Song, …, W. Sun Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine Mechanical Systems and Signal Processing, 188 (2023), p. 110022 https://doi.org/10.1016/j.ymssp.2022.110022Shariati et al., 2022 Shariati, M., Mafipour, M. S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N. T., & Shariati, A. (2022). A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Engineering with Computers, 1-23.Sjödin et al., 2023 D. Sjödin, V. Parida, M. Kohtamäki Artificial intelligence enabling circular business model innovation in digital servitization: Conceptualizing dynamic capabilities, AI capacities, business models and effects Technol. Forecast. Soc. Chang., 197 (2023), Article 122903Su, 2020 W. Su, et al. Analysis and prediction of TBM disc cutter wear when tunneling in hard rock strata: a case study of a metro tunnel excavation in Shenzhen, China Wear, 446 (2020), Article 203190Tian, 2023 Z. Tian, et al. Load extraction from actual operation data for data-driven ultra-short-term room air-conditioning load prediction Energ. Buildings, 296 (2023), Article 113348Tiana, 2023 Tiana T Thiagi, S.J., Comprehensive Predictive Modeling of Earthquake Resilience in Multi-Story Buildings Utilizing Advanced Machine Learning Techniques. International Journal of Civil Engineering Advancements (IJCEA), 2023. 1(1): p. 10-19.Toghroli et al., 2014 A. Toghroli, M. Mohammadhassani, M. Suhatril, M. Shariati, Z. Ibrahim Prediction of shear capacity of channel shear connectors using the ANFIS model Steel Compos Struct, 17 (5) (2014), pp. 623-639Toghroli et al., 2020 A. Toghroli, M.S. Nasirianfar, A. Shariati, M. Khorami, M. Paknahad, M. Ahmadi, …, Y. Zandi Analysis of extended end plate connection equipped with SMA bolts using component method. Steel and Composite Structures An International Journal, 36 (2) (2020), pp. 213-228Wang, 2015 Q. Wang, et al. Phm and active maintenance for high-speed railway traction power supply system J. Southwest Jiaotong University, 5 (2015), p. 026Wang, 2017 L. Wang, et al. Development of a prediction model for the wear evolution of disc cutters on rock TBM cutterhead Tunn. Undergr. Space Technol., 67 (2017), pp. 147-157Wang, 2021 Q. Wang, et al. Tunnel lining crack recognition based on improved multiscale retinex and sobel edge detection Math. Probl. Eng., 2021 (2021), Article 9969464Wei et al., 2018 X. Wei, M. Shariati, Y. Zandi, S. Pei, Z. Jin, S. Gharachurlu, …, M. Khorami Distribution of shear force in perforated shear connectors. Steel and Composite Structures An International Journal, 27 (3) (2018), pp. 389-399Xiang, 2013 L. Xiang, et al. GPR evaluation of the Damaoshan highway tunnel: a case study NDT and E Int., 59 (2013), pp. 68-76Xue, 2020 Y. Xue, et al. Deep learning-based automatic recognition of water leakage area in shield tunnel lining Tunn. Undergr. Space Technol., 104 (2020), Article 103524Xue and Li, 2018 Y. Xue, Y. Li A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects Comput. Aided Civ. Inf. Eng., 33 (8) (2018), pp. 638-654Yazdani et al., 2021 M. Yazdani, K. Kabirifar, B.E. Frimpong, M. Shariati, M. Mirmozaffari, A. Boskabadi Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia Journal of Cleaner Production, 280 (2021), p. 124138Yousef Zandi and Maryam Ramezani, 2023 A.S.A. Yousef Zandi, Maryam Ramezani Advanced Integration of IoT and Neural Networks for Real-Time Structural Health Monitoring and Assessment of Bridges International Journal of Civil Engineering Advancements (IJCEA), 1 (1) (2023), pp. 1-9Yu, 2018 P. Yu, et al. Water leakage diagnosis in metro tunnels by intergration of laser point cloud and infrared thermal imaging Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci., 42 (2018), pp. 2167-2171Yu and Mooney, 2023 H. Yu, M. Mooney Characterizing the as-encountered ground condition with tunnel boring machine data using semi-supervised learning Comput. Geotech., 154 (2023), Article 105159Yu et al., 2023 Yu, S., Zhao, C., Song, L., Li, Y., & Du, Y. (2023). Understanding traffic bottlenecks of long freeway tunnels based on a novel location-dependent lighting-related car-following model. Tunnelling and Underground Space Technology, 136, 105098. doi: https://doi.org/10.1016/j.tust.2023.105098 .Zainah and Shahaboddin, 1801 T.A.S.M.I. Zainah, S.M.S.M.S. Shahaboddin Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam Journal of Intelligent Manufacturing, 29 (8) (1801), p. 1793Zhang, 2018 X. Zhang, et al. Experimental study on wear of TBM disc cutter rings with different kinds of hardness Tunn. Undergr. Space Technol., 82 (2018), pp. 346-357Zhang, 2021 L. Zhang, et al. Estimating long-term impacts of tunnel infrastructure development on urban sustainability using granular computing Appl. Soft Comput., 113 (2021), Article 107932Zhang and Wang, 2023 L. Zhang, J. Wang Intelligent safe operation and maintenance of oil and gas production systems: connotations and key technologies Nat. Gas Ind. B, 10 (3) (2023), pp. 293-303Zhang et al., 2021 X. Zhang, X. Wu, W. Broere Impact of subsoil spatial variability on deformations of immersed tunnel Geotechnical Aspects of Underground Construction in Soft Ground, CRC Press (2021), pp. 738-745Zhao, 2021 S. Zhao, et al. Deep learning-based classification and instance segmentation of leakage-area and scaling images of shield tunnel linings Struct. Control Health Monit., 28 (6) (2021), p. e2732Zhao et al., 2023 N. Zhao, D. Li, S. Gu, W. Du Analytical fragility relation for buried cast iron pipelines with lead-caulked joints based on machine learning algorithms Earthquake Spectra, 40 (1) (2023), pp. 566-583 https://doi.org/10.1177/87552930231209195Zhong, 2023 Y. Zhong, et al. DDI-GCN: drug-drug interaction prediction via explainable graph convolutional networks Artif. Intell. Med., 144 (2023), Article 102640Zhou, 2023 C. Zhou, et al. Deep learning technologies for shield tunneling: challenges and opportunities Autom. Constr., 154 (2023), Article 104982161173Urban Tunnel InfrastructureTunnel Electromechanical Equipment (TEE)Deep LearningTunnel Boring Machine (TBM) PerformanceAtt-GCN (Attention-based Graph Convolutiona Networks)Predictive MaintenancePublicationORIGINALAdvancing tunnel equipment maintenance through data.pdfAdvancing tunnel equipment maintenance through data.pdfapplication/pdf6418867https://repositorio.cuc.edu.co/bitstreams/59c282a0-95c5-45fd-b432-e41a8ff09a88/download70a97632a38665d74e899db747814bbaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/c006ef4d-0b86-4f77-bcde-14cb97489b92/download73a5432e0b76442b22b026844140d683MD52TEXTAdvancing tunnel equipment maintenance through data.pdf.txtAdvancing tunnel equipment maintenance through data.pdf.txtExtracted texttext/plain100383https://repositorio.cuc.edu.co/bitstreams/cfe7b31f-88cc-4e48-90cf-ee11d18c4b0f/download6ccc015dada2f6d45ad12f2443310d5cMD53THUMBNAILAdvancing tunnel equipment maintenance through data.pdf.jpgAdvancing tunnel equipment maintenance through data.pdf.jpgGenerated Thumbnailimage/jpeg14237https://repositorio.cuc.edu.co/bitstreams/c16d1e6c-2cea-4ed2-837b-875e1d2eb9bb/download40f58f0461df6f9bba5f846e57430a35MD5411323/13357oai:repositorio.cuc.edu.co:11323/133572024-09-24 03:01:16.751https://creativecommons.org/licenses/by-nc-nd/4.0/© 2024 Published by Elsevier Ltd.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K