Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure
Urban tunnel infrastructure, crucial for societal well-being, depends on reliable Tunnel Electromechanical Equipment (TEE), including ventilation, drainage, and lighting systems. A key challenge is these systems’ proactive and efficient maintenance, particularly under limited resources. This study i...
- Autores:
-
Zou, Xiaoping
Zeng , Jie
Yan, Gongxing
Mohammed, Khidhair Jasim
Abbas, Mohamed
Abdullah, Nermeen
Elattar, Samia
Amine Khadimallah, Mohamed
Toghroli, Sana
Escorcia-Gutierrez, José
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13357
- Acceso en línea:
- https://hdl.handle.net/11323/13357
- Palabra clave:
- Urban Tunnel Infrastructure
Tunnel Electromechanical Equipment (TEE)
Deep Learning
Tunnel Boring Machine (TBM) Performance
Att-GCN (Attention-based Graph Convolutiona Networks)
Predictive Maintenance
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)