Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure

Urban tunnel infrastructure, crucial for societal well-being, depends on reliable Tunnel Electromechanical Equipment (TEE), including ventilation, drainage, and lighting systems. A key challenge is these systems’ proactive and efficient maintenance, particularly under limited resources. This study i...

Full description

Autores:
Zou, Xiaoping
Zeng , Jie
Yan, Gongxing
Mohammed, Khidhair Jasim
Abbas, Mohamed
Abdullah, Nermeen
Elattar, Samia
Amine Khadimallah, Mohamed
Toghroli, Sana
Escorcia-Gutierrez, José
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13357
Acceso en línea:
https://hdl.handle.net/11323/13357
Palabra clave:
Urban Tunnel Infrastructure
Tunnel Electromechanical Equipment (TEE)
Deep Learning
Tunnel Boring Machine (TBM) Performance
Att-GCN (Attention-based Graph Convolutiona Networks)
Predictive Maintenance
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)