Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression

The low quality and relevance at all educational levels remain a problem present in education in Colombia, limiting the training and development of skills for work and for life. The above is evidenced in the results of the country in standardized tests. Colombia occupies one of the last places the t...

Full description

Autores:
Ariza Colpas, Paola Patricia
Guerrero-Cuentas, Hilda Rosa
Herrera-Tapias, Belina
Oñate-Bowen, Alvaro Agustín
Suarez-Brieva, Eydy del Carmen
Piñeres Melo, Marlon Alberto
Butt Shariq, Aziz
COLLAZOS MORALES, CARLOS ANDRES
Ramayo González, Ramón Enrique
MARTÍNEZ PALMERA, OLGA
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8694
Acceso en línea:
https://hdl.handle.net/11323/8694
https://doi.org/10.1016/j.procs.2021.07.072
https://repositorio.cuc.edu.co/
Palabra clave:
Teaching
Narrative genre
Story
Fable
Primary school
Learning software
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_61a0be11bc431f319533c9832d6e067f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8694
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression
title Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression
spellingShingle Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression
Teaching
Narrative genre
Story
Fable
Primary school
Learning software
title_short Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression
title_full Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression
title_fullStr Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression
title_full_unstemmed Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression
title_sort Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression
dc.creator.fl_str_mv Ariza Colpas, Paola Patricia
Guerrero-Cuentas, Hilda Rosa
Herrera-Tapias, Belina
Oñate-Bowen, Alvaro Agustín
Suarez-Brieva, Eydy del Carmen
Piñeres Melo, Marlon Alberto
Butt Shariq, Aziz
COLLAZOS MORALES, CARLOS ANDRES
Ramayo González, Ramón Enrique
MARTÍNEZ PALMERA, OLGA
dc.contributor.author.spa.fl_str_mv Ariza Colpas, Paola Patricia
Guerrero-Cuentas, Hilda Rosa
Herrera-Tapias, Belina
Oñate-Bowen, Alvaro Agustín
Suarez-Brieva, Eydy del Carmen
Piñeres Melo, Marlon Alberto
Butt Shariq, Aziz
COLLAZOS MORALES, CARLOS ANDRES
Ramayo González, Ramón Enrique
MARTÍNEZ PALMERA, OLGA
dc.subject.spa.fl_str_mv Teaching
Narrative genre
Story
Fable
Primary school
Learning software
topic Teaching
Narrative genre
Story
Fable
Primary school
Learning software
description The low quality and relevance at all educational levels remain a problem present in education in Colombia, limiting the training and development of skills for work and for life. The above is evidenced in the results of the country in standardized tests. Colombia occupies one of the last places the two most recognized international tests (TIMMS and PISA); In fact, it is considered that ―at the international level, one of the benchmarks for measuring scientific competences is the PISA tests, which assess the knowledge, skills, and scientific attitudes of 15-year-old students in different countries. In 2006, PISA tests were applied to young Colombians. While it is true that the test results show the motivation of young Colombians to project in the scientific field (those evaluated had high scores in the subcompetence of identification of scientific phenomena), the country lags in other competences that are more related Direct with innovation processes, such as explaining scientific events and using scientific evidence. This article resulted from the research project: ―Strengthening of citizen and democratic culture in CT + I through the iep supported in ICT in the Department of Magdalena financed by SIGR funds - General System of Royalties.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-15T14:44:08Z
dc.date.available.none.fl_str_mv 2021-09-15T14:44:08Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1877-0509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8694
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.procs.2021.07.072
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1877-0509
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8694
https://doi.org/10.1016/j.procs.2021.07.072
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Hall, T., & Kamper, H. (2020, January). Towards Improving Human Arithmetic Learning using Machine Learning. In 2020 International SAUPEC/RobMech/PRASA Conference (pp. 1-6). IEEE.
[2] Khan, N., Bhanushali, D., Patel, S., & Kotecha, R. (2020). Strengthening e-Education in India using Machine Learning. Available at SSRN 3565255.
[3] Abidi, S. M. R., Ni, J., Ge, S., Wang, X., Ding, H., Zhu, W., & Zhang, W. (2020, January). Demystifying help-seeking students interacting multimodal learning environment under machine learning regime. In Eleventh International Conference on Graphics and Image Processing (ICGIP 2019) (Vol. 11373, p. 113732V). International Society for Optics and Photonics.
[4] Rajkumar, R., & Ganapathy, V. (2020). Bio-Inspiring Learning Style Chatbot Inventory using Brain Computing Interface to Increase the Efficiency of E-Learning. IEEE Access.
[5] Ariza Colpas, P. P., Herrera-Tapias, B., Piñeres-Melo, M., Guerrero-Cuentas, H., Consuegra-Bernal, M., De-la-Hoz Valdiris, E., ... & Morales-Ortega, R. C. (2020). Cyclon language first grade app: technological platform to support the construction of citizen and democratic culture of science, technology and innovation in children and youth groups.
[6] Virvou, M., Alepis, E., Tsihrintzis, G. A., & Jain, L. C. (2020). Machine Learning Paradigms. In Machine Learning Paradigms (pp. 1-5). Springer, Cham.
[7] Jithendran, A., Karthik, P. P., Santhosh, S., & Naren, J. (2020). Emotion Recognition on E-Learning Community to Improve the Learning Outcomes Using Machine Learning Concepts: A Pilot Study. In Smart Systems and IoT: Innovations in Computing (pp. 521-530). Springer, Singapore.
[8] Alenezi, H. S., & Faisal, M. H. (2020). Utilizing crowdsourcing and machine learning in education: Literature review. Education and Information Technologies, 1- 16.
[9] Togawa, S., Kondo, A., & Kanenishi, K. (2020, February). Development of Tutoring Assistance Framework Using Machine Learning Technology for Teachers. In International Conference on Intelligent Human Systems Integration (pp. 677-682). Springer, Cham.
[10] Moubayed, A., Injadat, M., Shami, A., & Lutfiyya, H. (2020). Student Engagement Level in e-learning Environment: Clustering Using K- means. American Journal of Distance Education, 1-20.
[11] Chrysafiadi, K., Virvou, M., & Sakkopoulos, E. (2020). Optimizing Programming Language Learning Through Student Modeling in an Adaptive Web-Based Educational Environment. In Machine Learning Paradigms (pp. 205-223). Springer, Cham.
[12] Habib, M. K. (2020). Robotics E-Learning Supported by Collaborative and Distributed Intelligent Environments. In Revolutionizing Education in the Age of AI and Machine Learning (pp. 97-113). IGI Global.
[13] Troussas, C., & Virvou, M. (2020). Blending Machine Learning with Krashen’s Theory and Felder-Silverman Model for Student Modeling. In Advances in Social Networking-based Learning (pp. 99-119). Springer, Cham.
[14] Boussakssou, M., Hssina, B., & Erittali, M. (2020). Towards an Adaptive E-learning System Based on Q-Learning Algorithm. Procedia Computer Science, 170, 1198-1203.
[15] Piñeres-Melo, M. A., Ariza-Colpas, P. P., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). SSwWS: Structural Model of Information Architecture. In International Conference on Swarm Intelligence (pp. 400-410). Springer, Cham.
[16] Troussas, C., Krouska, A., & Virvou, M. (2020). Using a multi module model for learning analytics to predict learners’ cognitive states and provide tailored learning pathways and assessment. In Machine Learning Paradigms (pp. 9-22). Springer, Cham
[17] Lara, J. A., Aljawarneh, S., & Pamplona, S. (2020). Special issue on the current trends in E-learning Assessment. Journal of Computing in Higher Education, 32(1), 1-8.
[18] Zagorskis, V., Gorbunovs, A., & Kapenieks, A. (2020). TELECI ARCHITECTURE FOR MACHINE LEARNING ALGORITHMS INTEGRATION IN AN EXISTING LMS. Emerging Extended Reality Technologies for Industry 4.0: Early Experiences with Conception, Design, Implementation, Evaluation and Deployment, 121.
[19] Cerezo, R., Bogarín, A., Esteban, M., & Romero, C. (2020). Process mining for self-regulated learning assessment in e-learning. Journal of Computing in Higher Education, 32(1), 74-88
[20] Nilashi, M., Ahmadi, N., Samad, S., Shahmoradi, L., Ahmadi, H., Ibrahim, O., ... & Yadegaridehkordi, E. (2020). Disease Diagnosis Using Machine Learning Techniques: A Review and Classification. Journal of Soft Computing and Decision Support Systems, 7(1), 19-30.
[21] Alihodzic, A., Tuba, E., & Tuba, M. (2020). An Improved Extreme Learning Machine Tuning by Flower Pollination Algorithm. In Nature- Inspired Computation in Data Mining and Machine Learning (pp. 95-112). Springer, Cham
[22] Rajendra, A. B., Rajkumar, N., Bhat, S. N., Suhas, T. R., & Joshi, S. P. N. (2020). E-Learning Web Accessibility Framework for Deaf/Blind Kannada-Speaking Disabled People. In Proceedings of ICRIC 2019 (pp. 595-604). Springer, Cham.
[23] Crowder, J. A., Carbone, J., & Friess, S. (2020). Abductive artificial intelligence learning models. In Artificial Psychology (pp. 51-63). Springer, Cham
[24] Ofori, F., Maina, E., & Gitonga, R. (2020). Using Machine Learning Algorithms to Predict Students’ Performance and Improve Learning Outcome: A Literature Based Review. Journal of Information and Technology, 4(1), 33-55.
[25] Ariza-Colpas, P. P., Piñeres-Melo, M. A., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). WSIA: Web Ontological Search Engine Based on Smart Agents Applied to Scientific Articles. In International Conference on Swarm Intelligence (pp. 338-347). Springer, Cham.
[26] Tokunaga, K., Saeki, C., Taniguchi, S., Nakano, S., Ohta, H., & Nakamura, M. (2020). Nondestructive evaluation of fish meat using ultrasound signals and machine learning methods. Aquacultural Engineering, 89, 102052.
[27] Hendradi, P., Abd Ghani, M. K., Mahfuzah, S. N., Yudatama, U., Prabowo, N. A., & Widyanto, R. A. (2020). Artificial Intelligence Influence In Education 4.0 To Architecture Cloud Based E-Learning System. International Journal of Artificial Intelligence Research, 4(1).
[28]Naidu, V. R., Singh, B., Al Farei, K., & Al Suqri, N. (2020). Machine Learning for Flipped Teaching in Higher Education—A Reflection. In Sustainable Development and Social Responsibility—Volume 2 (pp. 129-132). Springer, Cham.
[29] Guo, Y., Yu, H., Chen, D., & Zhao, Y. Y. (2020). Machine learning distilled metabolite biomarkers for early stage renal injury. Metabolomics, 16(1), 4.
[30]Troussas, C., & Virvou, M. (2020). Advances in Social Networking-based Learning: Machine Learning-based User Modelling and Sentiment Analysis (Vol. 181). Springer Nature.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050921014757
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/fe45d7a5-d5cc-4e47-a8f8-e67aa9aeb971/download
https://repositorio.cuc.edu.co/bitstreams/aada53b7-bcbd-4935-afff-98d5b086a48e/download
https://repositorio.cuc.edu.co/bitstreams/964e857f-1e84-4176-9ce4-20665ffbe3ec/download
https://repositorio.cuc.edu.co/bitstreams/57e39c16-e200-4db8-bea1-9f3d40632c74/download
https://repositorio.cuc.edu.co/bitstreams/07d6aadf-acfe-4bed-a043-e771e9a705dd/download
bitstream.checksum.fl_str_mv 0642f12477d9eecb7ff7e759d56f6c98
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
94282e47175baa6045c753b98bbd05e8
60dc5aa37cddaf9063bad2e71d18fb7c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166909658398720
spelling Ariza Colpas, Paola PatriciaGuerrero-Cuentas, Hilda RosaHerrera-Tapias, BelinaOñate-Bowen, Alvaro AgustínSuarez-Brieva, Eydy del CarmenPiñeres Melo, Marlon AlbertoButt Shariq, AzizCOLLAZOS MORALES, CARLOS ANDRESRamayo González, Ramón EnriqueMARTÍNEZ PALMERA, OLGA2021-09-15T14:44:08Z2021-09-15T14:44:08Z20211877-0509https://hdl.handle.net/11323/8694https://doi.org/10.1016/j.procs.2021.07.072Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The low quality and relevance at all educational levels remain a problem present in education in Colombia, limiting the training and development of skills for work and for life. The above is evidenced in the results of the country in standardized tests. Colombia occupies one of the last places the two most recognized international tests (TIMMS and PISA); In fact, it is considered that ―at the international level, one of the benchmarks for measuring scientific competences is the PISA tests, which assess the knowledge, skills, and scientific attitudes of 15-year-old students in different countries. In 2006, PISA tests were applied to young Colombians. While it is true that the test results show the motivation of young Colombians to project in the scientific field (those evaluated had high scores in the subcompetence of identification of scientific phenomena), the country lags in other competences that are more related Direct with innovation processes, such as explaining scientific events and using scientific evidence. This article resulted from the research project: ―Strengthening of citizen and democratic culture in CT + I through the iep supported in ICT in the Department of Magdalena financed by SIGR funds - General System of Royalties.Ariza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600Guerrero-Cuentas, Hilda RosaHerrera-Tapias, BelinaOñate-Bowen, Alvaro AgustínSuarez-Brieva, Eydy del CarmenPiñeres Melo, Marlon Alberto-will be generated-orcid-0000-0002-1858-2083-600Butt Shariq, AzizCOLLAZOS MORALES, CARLOS ANDRES-will be generated-orcid-0000-0002-1996-1384-600Ramayo González, Ramón Enrique-will be generated-orcid-0000-0001-6137-6181-600MARTÍNEZ PALMERA, OLGA-will be generated-orcid-0000-0002-7930-7624-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050921014757TeachingNarrative genreStoryFablePrimary schoolLearning softwareStrengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regressionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Hall, T., & Kamper, H. (2020, January). Towards Improving Human Arithmetic Learning using Machine Learning. In 2020 International SAUPEC/RobMech/PRASA Conference (pp. 1-6). IEEE.[2] Khan, N., Bhanushali, D., Patel, S., & Kotecha, R. (2020). Strengthening e-Education in India using Machine Learning. Available at SSRN 3565255.[3] Abidi, S. M. R., Ni, J., Ge, S., Wang, X., Ding, H., Zhu, W., & Zhang, W. (2020, January). Demystifying help-seeking students interacting multimodal learning environment under machine learning regime. In Eleventh International Conference on Graphics and Image Processing (ICGIP 2019) (Vol. 11373, p. 113732V). International Society for Optics and Photonics.[4] Rajkumar, R., & Ganapathy, V. (2020). Bio-Inspiring Learning Style Chatbot Inventory using Brain Computing Interface to Increase the Efficiency of E-Learning. IEEE Access.[5] Ariza Colpas, P. P., Herrera-Tapias, B., Piñeres-Melo, M., Guerrero-Cuentas, H., Consuegra-Bernal, M., De-la-Hoz Valdiris, E., ... & Morales-Ortega, R. C. (2020). Cyclon language first grade app: technological platform to support the construction of citizen and democratic culture of science, technology and innovation in children and youth groups.[6] Virvou, M., Alepis, E., Tsihrintzis, G. A., & Jain, L. C. (2020). Machine Learning Paradigms. In Machine Learning Paradigms (pp. 1-5). Springer, Cham.[7] Jithendran, A., Karthik, P. P., Santhosh, S., & Naren, J. (2020). Emotion Recognition on E-Learning Community to Improve the Learning Outcomes Using Machine Learning Concepts: A Pilot Study. In Smart Systems and IoT: Innovations in Computing (pp. 521-530). Springer, Singapore.[8] Alenezi, H. S., & Faisal, M. H. (2020). Utilizing crowdsourcing and machine learning in education: Literature review. Education and Information Technologies, 1- 16.[9] Togawa, S., Kondo, A., & Kanenishi, K. (2020, February). Development of Tutoring Assistance Framework Using Machine Learning Technology for Teachers. In International Conference on Intelligent Human Systems Integration (pp. 677-682). Springer, Cham.[10] Moubayed, A., Injadat, M., Shami, A., & Lutfiyya, H. (2020). Student Engagement Level in e-learning Environment: Clustering Using K- means. American Journal of Distance Education, 1-20.[11] Chrysafiadi, K., Virvou, M., & Sakkopoulos, E. (2020). Optimizing Programming Language Learning Through Student Modeling in an Adaptive Web-Based Educational Environment. In Machine Learning Paradigms (pp. 205-223). Springer, Cham.[12] Habib, M. K. (2020). Robotics E-Learning Supported by Collaborative and Distributed Intelligent Environments. In Revolutionizing Education in the Age of AI and Machine Learning (pp. 97-113). IGI Global.[13] Troussas, C., & Virvou, M. (2020). Blending Machine Learning with Krashen’s Theory and Felder-Silverman Model for Student Modeling. In Advances in Social Networking-based Learning (pp. 99-119). Springer, Cham.[14] Boussakssou, M., Hssina, B., & Erittali, M. (2020). Towards an Adaptive E-learning System Based on Q-Learning Algorithm. Procedia Computer Science, 170, 1198-1203.[15] Piñeres-Melo, M. A., Ariza-Colpas, P. P., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). SSwWS: Structural Model of Information Architecture. In International Conference on Swarm Intelligence (pp. 400-410). Springer, Cham.[16] Troussas, C., Krouska, A., & Virvou, M. (2020). Using a multi module model for learning analytics to predict learners’ cognitive states and provide tailored learning pathways and assessment. In Machine Learning Paradigms (pp. 9-22). Springer, Cham[17] Lara, J. A., Aljawarneh, S., & Pamplona, S. (2020). Special issue on the current trends in E-learning Assessment. Journal of Computing in Higher Education, 32(1), 1-8.[18] Zagorskis, V., Gorbunovs, A., & Kapenieks, A. (2020). TELECI ARCHITECTURE FOR MACHINE LEARNING ALGORITHMS INTEGRATION IN AN EXISTING LMS. Emerging Extended Reality Technologies for Industry 4.0: Early Experiences with Conception, Design, Implementation, Evaluation and Deployment, 121.[19] Cerezo, R., Bogarín, A., Esteban, M., & Romero, C. (2020). Process mining for self-regulated learning assessment in e-learning. Journal of Computing in Higher Education, 32(1), 74-88[20] Nilashi, M., Ahmadi, N., Samad, S., Shahmoradi, L., Ahmadi, H., Ibrahim, O., ... & Yadegaridehkordi, E. (2020). Disease Diagnosis Using Machine Learning Techniques: A Review and Classification. Journal of Soft Computing and Decision Support Systems, 7(1), 19-30.[21] Alihodzic, A., Tuba, E., & Tuba, M. (2020). An Improved Extreme Learning Machine Tuning by Flower Pollination Algorithm. In Nature- Inspired Computation in Data Mining and Machine Learning (pp. 95-112). Springer, Cham[22] Rajendra, A. B., Rajkumar, N., Bhat, S. N., Suhas, T. R., & Joshi, S. P. N. (2020). E-Learning Web Accessibility Framework for Deaf/Blind Kannada-Speaking Disabled People. In Proceedings of ICRIC 2019 (pp. 595-604). Springer, Cham.[23] Crowder, J. A., Carbone, J., & Friess, S. (2020). Abductive artificial intelligence learning models. In Artificial Psychology (pp. 51-63). Springer, Cham[24] Ofori, F., Maina, E., & Gitonga, R. (2020). Using Machine Learning Algorithms to Predict Students’ Performance and Improve Learning Outcome: A Literature Based Review. Journal of Information and Technology, 4(1), 33-55.[25] Ariza-Colpas, P. P., Piñeres-Melo, M. A., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). WSIA: Web Ontological Search Engine Based on Smart Agents Applied to Scientific Articles. In International Conference on Swarm Intelligence (pp. 338-347). Springer, Cham.[26] Tokunaga, K., Saeki, C., Taniguchi, S., Nakano, S., Ohta, H., & Nakamura, M. (2020). Nondestructive evaluation of fish meat using ultrasound signals and machine learning methods. Aquacultural Engineering, 89, 102052.[27] Hendradi, P., Abd Ghani, M. K., Mahfuzah, S. N., Yudatama, U., Prabowo, N. A., & Widyanto, R. A. (2020). Artificial Intelligence Influence In Education 4.0 To Architecture Cloud Based E-Learning System. International Journal of Artificial Intelligence Research, 4(1).[28]Naidu, V. R., Singh, B., Al Farei, K., & Al Suqri, N. (2020). Machine Learning for Flipped Teaching in Higher Education—A Reflection. In Sustainable Development and Social Responsibility—Volume 2 (pp. 129-132). Springer, Cham.[29] Guo, Y., Yu, H., Chen, D., & Zhao, Y. Y. (2020). Machine learning distilled metabolite biomarkers for early stage renal injury. Metabolomics, 16(1), 4.[30]Troussas, C., & Virvou, M. (2020). Advances in Social Networking-based Learning: Machine Learning-based User Modelling and Sentiment Analysis (Vol. 181). Springer Nature.PublicationORIGINALStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdfStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdfapplication/pdf805688https://repositorio.cuc.edu.co/bitstreams/fe45d7a5-d5cc-4e47-a8f8-e67aa9aeb971/download0642f12477d9eecb7ff7e759d56f6c98MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/aada53b7-bcbd-4935-afff-98d5b086a48e/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/964e857f-1e84-4176-9ce4-20665ffbe3ec/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdf.jpgStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdf.jpgimage/jpeg50565https://repositorio.cuc.edu.co/bitstreams/57e39c16-e200-4db8-bea1-9f3d40632c74/download94282e47175baa6045c753b98bbd05e8MD54TEXTStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdf.txtStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdf.txttext/plain32924https://repositorio.cuc.edu.co/bitstreams/07d6aadf-acfe-4bed-a043-e771e9a705dd/download60dc5aa37cddaf9063bad2e71d18fb7cMD5511323/8694oai:repositorio.cuc.edu.co:11323/86942024-09-17 14:24:59.036http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==