Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression
The low quality and relevance at all educational levels remain a problem present in education in Colombia, limiting the training and development of skills for work and for life. The above is evidenced in the results of the country in standardized tests. Colombia occupies one of the last places the t...
- Autores:
-
Ariza Colpas, Paola Patricia
Guerrero-Cuentas, Hilda Rosa
Herrera-Tapias, Belina
Oñate-Bowen, Alvaro Agustín
Suarez-Brieva, Eydy del Carmen
Piñeres Melo, Marlon Alberto
Butt Shariq, Aziz
COLLAZOS MORALES, CARLOS ANDRES
Ramayo González, Ramón Enrique
MARTÍNEZ PALMERA, OLGA
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8694
- Acceso en línea:
- https://hdl.handle.net/11323/8694
https://doi.org/10.1016/j.procs.2021.07.072
https://repositorio.cuc.edu.co/
- Palabra clave:
- Teaching
Narrative genre
Story
Fable
Primary school
Learning software
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_61a0be11bc431f319533c9832d6e067f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8694 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression |
title |
Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression |
spellingShingle |
Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression Teaching Narrative genre Story Fable Primary school Learning software |
title_short |
Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression |
title_full |
Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression |
title_fullStr |
Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression |
title_full_unstemmed |
Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression |
title_sort |
Strengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression |
dc.creator.fl_str_mv |
Ariza Colpas, Paola Patricia Guerrero-Cuentas, Hilda Rosa Herrera-Tapias, Belina Oñate-Bowen, Alvaro Agustín Suarez-Brieva, Eydy del Carmen Piñeres Melo, Marlon Alberto Butt Shariq, Aziz COLLAZOS MORALES, CARLOS ANDRES Ramayo González, Ramón Enrique MARTÍNEZ PALMERA, OLGA |
dc.contributor.author.spa.fl_str_mv |
Ariza Colpas, Paola Patricia Guerrero-Cuentas, Hilda Rosa Herrera-Tapias, Belina Oñate-Bowen, Alvaro Agustín Suarez-Brieva, Eydy del Carmen Piñeres Melo, Marlon Alberto Butt Shariq, Aziz COLLAZOS MORALES, CARLOS ANDRES Ramayo González, Ramón Enrique MARTÍNEZ PALMERA, OLGA |
dc.subject.spa.fl_str_mv |
Teaching Narrative genre Story Fable Primary school Learning software |
topic |
Teaching Narrative genre Story Fable Primary school Learning software |
description |
The low quality and relevance at all educational levels remain a problem present in education in Colombia, limiting the training and development of skills for work and for life. The above is evidenced in the results of the country in standardized tests. Colombia occupies one of the last places the two most recognized international tests (TIMMS and PISA); In fact, it is considered that ―at the international level, one of the benchmarks for measuring scientific competences is the PISA tests, which assess the knowledge, skills, and scientific attitudes of 15-year-old students in different countries. In 2006, PISA tests were applied to young Colombians. While it is true that the test results show the motivation of young Colombians to project in the scientific field (those evaluated had high scores in the subcompetence of identification of scientific phenomena), the country lags in other competences that are more related Direct with innovation processes, such as explaining scientific events and using scientific evidence. This article resulted from the research project: ―Strengthening of citizen and democratic culture in CT + I through the iep supported in ICT in the Department of Magdalena financed by SIGR funds - General System of Royalties. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-15T14:44:08Z |
dc.date.available.none.fl_str_mv |
2021-09-15T14:44:08Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1877-0509 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8694 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.procs.2021.07.072 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1877-0509 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8694 https://doi.org/10.1016/j.procs.2021.07.072 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Hall, T., & Kamper, H. (2020, January). Towards Improving Human Arithmetic Learning using Machine Learning. In 2020 International SAUPEC/RobMech/PRASA Conference (pp. 1-6). IEEE. [2] Khan, N., Bhanushali, D., Patel, S., & Kotecha, R. (2020). Strengthening e-Education in India using Machine Learning. Available at SSRN 3565255. [3] Abidi, S. M. R., Ni, J., Ge, S., Wang, X., Ding, H., Zhu, W., & Zhang, W. (2020, January). Demystifying help-seeking students interacting multimodal learning environment under machine learning regime. In Eleventh International Conference on Graphics and Image Processing (ICGIP 2019) (Vol. 11373, p. 113732V). International Society for Optics and Photonics. [4] Rajkumar, R., & Ganapathy, V. (2020). Bio-Inspiring Learning Style Chatbot Inventory using Brain Computing Interface to Increase the Efficiency of E-Learning. IEEE Access. [5] Ariza Colpas, P. P., Herrera-Tapias, B., Piñeres-Melo, M., Guerrero-Cuentas, H., Consuegra-Bernal, M., De-la-Hoz Valdiris, E., ... & Morales-Ortega, R. C. (2020). Cyclon language first grade app: technological platform to support the construction of citizen and democratic culture of science, technology and innovation in children and youth groups. [6] Virvou, M., Alepis, E., Tsihrintzis, G. A., & Jain, L. C. (2020). Machine Learning Paradigms. In Machine Learning Paradigms (pp. 1-5). Springer, Cham. [7] Jithendran, A., Karthik, P. P., Santhosh, S., & Naren, J. (2020). Emotion Recognition on E-Learning Community to Improve the Learning Outcomes Using Machine Learning Concepts: A Pilot Study. In Smart Systems and IoT: Innovations in Computing (pp. 521-530). Springer, Singapore. [8] Alenezi, H. S., & Faisal, M. H. (2020). Utilizing crowdsourcing and machine learning in education: Literature review. Education and Information Technologies, 1- 16. [9] Togawa, S., Kondo, A., & Kanenishi, K. (2020, February). Development of Tutoring Assistance Framework Using Machine Learning Technology for Teachers. In International Conference on Intelligent Human Systems Integration (pp. 677-682). Springer, Cham. [10] Moubayed, A., Injadat, M., Shami, A., & Lutfiyya, H. (2020). Student Engagement Level in e-learning Environment: Clustering Using K- means. American Journal of Distance Education, 1-20. [11] Chrysafiadi, K., Virvou, M., & Sakkopoulos, E. (2020). Optimizing Programming Language Learning Through Student Modeling in an Adaptive Web-Based Educational Environment. In Machine Learning Paradigms (pp. 205-223). Springer, Cham. [12] Habib, M. K. (2020). Robotics E-Learning Supported by Collaborative and Distributed Intelligent Environments. In Revolutionizing Education in the Age of AI and Machine Learning (pp. 97-113). IGI Global. [13] Troussas, C., & Virvou, M. (2020). Blending Machine Learning with Krashen’s Theory and Felder-Silverman Model for Student Modeling. In Advances in Social Networking-based Learning (pp. 99-119). Springer, Cham. [14] Boussakssou, M., Hssina, B., & Erittali, M. (2020). Towards an Adaptive E-learning System Based on Q-Learning Algorithm. Procedia Computer Science, 170, 1198-1203. [15] Piñeres-Melo, M. A., Ariza-Colpas, P. P., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). SSwWS: Structural Model of Information Architecture. In International Conference on Swarm Intelligence (pp. 400-410). Springer, Cham. [16] Troussas, C., Krouska, A., & Virvou, M. (2020). Using a multi module model for learning analytics to predict learners’ cognitive states and provide tailored learning pathways and assessment. In Machine Learning Paradigms (pp. 9-22). Springer, Cham [17] Lara, J. A., Aljawarneh, S., & Pamplona, S. (2020). Special issue on the current trends in E-learning Assessment. Journal of Computing in Higher Education, 32(1), 1-8. [18] Zagorskis, V., Gorbunovs, A., & Kapenieks, A. (2020). TELECI ARCHITECTURE FOR MACHINE LEARNING ALGORITHMS INTEGRATION IN AN EXISTING LMS. Emerging Extended Reality Technologies for Industry 4.0: Early Experiences with Conception, Design, Implementation, Evaluation and Deployment, 121. [19] Cerezo, R., Bogarín, A., Esteban, M., & Romero, C. (2020). Process mining for self-regulated learning assessment in e-learning. Journal of Computing in Higher Education, 32(1), 74-88 [20] Nilashi, M., Ahmadi, N., Samad, S., Shahmoradi, L., Ahmadi, H., Ibrahim, O., ... & Yadegaridehkordi, E. (2020). Disease Diagnosis Using Machine Learning Techniques: A Review and Classification. Journal of Soft Computing and Decision Support Systems, 7(1), 19-30. [21] Alihodzic, A., Tuba, E., & Tuba, M. (2020). An Improved Extreme Learning Machine Tuning by Flower Pollination Algorithm. In Nature- Inspired Computation in Data Mining and Machine Learning (pp. 95-112). Springer, Cham [22] Rajendra, A. B., Rajkumar, N., Bhat, S. N., Suhas, T. R., & Joshi, S. P. N. (2020). E-Learning Web Accessibility Framework for Deaf/Blind Kannada-Speaking Disabled People. In Proceedings of ICRIC 2019 (pp. 595-604). Springer, Cham. [23] Crowder, J. A., Carbone, J., & Friess, S. (2020). Abductive artificial intelligence learning models. In Artificial Psychology (pp. 51-63). Springer, Cham [24] Ofori, F., Maina, E., & Gitonga, R. (2020). Using Machine Learning Algorithms to Predict Students’ Performance and Improve Learning Outcome: A Literature Based Review. Journal of Information and Technology, 4(1), 33-55. [25] Ariza-Colpas, P. P., Piñeres-Melo, M. A., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). WSIA: Web Ontological Search Engine Based on Smart Agents Applied to Scientific Articles. In International Conference on Swarm Intelligence (pp. 338-347). Springer, Cham. [26] Tokunaga, K., Saeki, C., Taniguchi, S., Nakano, S., Ohta, H., & Nakamura, M. (2020). Nondestructive evaluation of fish meat using ultrasound signals and machine learning methods. Aquacultural Engineering, 89, 102052. [27] Hendradi, P., Abd Ghani, M. K., Mahfuzah, S. N., Yudatama, U., Prabowo, N. A., & Widyanto, R. A. (2020). Artificial Intelligence Influence In Education 4.0 To Architecture Cloud Based E-Learning System. International Journal of Artificial Intelligence Research, 4(1). [28]Naidu, V. R., Singh, B., Al Farei, K., & Al Suqri, N. (2020). Machine Learning for Flipped Teaching in Higher Education—A Reflection. In Sustainable Development and Social Responsibility—Volume 2 (pp. 129-132). Springer, Cham. [29] Guo, Y., Yu, H., Chen, D., & Zhao, Y. Y. (2020). Machine learning distilled metabolite biomarkers for early stage renal injury. Metabolomics, 16(1), 4. [30]Troussas, C., & Virvou, M. (2020). Advances in Social Networking-based Learning: Machine Learning-based User Modelling and Sentiment Analysis (Vol. 181). Springer Nature. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1877050921014757 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/fe45d7a5-d5cc-4e47-a8f8-e67aa9aeb971/download https://repositorio.cuc.edu.co/bitstreams/aada53b7-bcbd-4935-afff-98d5b086a48e/download https://repositorio.cuc.edu.co/bitstreams/964e857f-1e84-4176-9ce4-20665ffbe3ec/download https://repositorio.cuc.edu.co/bitstreams/57e39c16-e200-4db8-bea1-9f3d40632c74/download https://repositorio.cuc.edu.co/bitstreams/07d6aadf-acfe-4bed-a043-e771e9a705dd/download |
bitstream.checksum.fl_str_mv |
0642f12477d9eecb7ff7e759d56f6c98 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 94282e47175baa6045c753b98bbd05e8 60dc5aa37cddaf9063bad2e71d18fb7c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166909658398720 |
spelling |
Ariza Colpas, Paola PatriciaGuerrero-Cuentas, Hilda RosaHerrera-Tapias, BelinaOñate-Bowen, Alvaro AgustínSuarez-Brieva, Eydy del CarmenPiñeres Melo, Marlon AlbertoButt Shariq, AzizCOLLAZOS MORALES, CARLOS ANDRESRamayo González, Ramón EnriqueMARTÍNEZ PALMERA, OLGA2021-09-15T14:44:08Z2021-09-15T14:44:08Z20211877-0509https://hdl.handle.net/11323/8694https://doi.org/10.1016/j.procs.2021.07.072Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The low quality and relevance at all educational levels remain a problem present in education in Colombia, limiting the training and development of skills for work and for life. The above is evidenced in the results of the country in standardized tests. Colombia occupies one of the last places the two most recognized international tests (TIMMS and PISA); In fact, it is considered that ―at the international level, one of the benchmarks for measuring scientific competences is the PISA tests, which assess the knowledge, skills, and scientific attitudes of 15-year-old students in different countries. In 2006, PISA tests were applied to young Colombians. While it is true that the test results show the motivation of young Colombians to project in the scientific field (those evaluated had high scores in the subcompetence of identification of scientific phenomena), the country lags in other competences that are more related Direct with innovation processes, such as explaining scientific events and using scientific evidence. This article resulted from the research project: ―Strengthening of citizen and democratic culture in CT + I through the iep supported in ICT in the Department of Magdalena financed by SIGR funds - General System of Royalties.Ariza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600Guerrero-Cuentas, Hilda RosaHerrera-Tapias, BelinaOñate-Bowen, Alvaro AgustínSuarez-Brieva, Eydy del CarmenPiñeres Melo, Marlon Alberto-will be generated-orcid-0000-0002-1858-2083-600Butt Shariq, AzizCOLLAZOS MORALES, CARLOS ANDRES-will be generated-orcid-0000-0002-1996-1384-600Ramayo González, Ramón Enrique-will be generated-orcid-0000-0001-6137-6181-600MARTÍNEZ PALMERA, OLGA-will be generated-orcid-0000-0002-7930-7624-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050921014757TeachingNarrative genreStoryFablePrimary schoolLearning softwareStrengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regressionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Hall, T., & Kamper, H. (2020, January). Towards Improving Human Arithmetic Learning using Machine Learning. In 2020 International SAUPEC/RobMech/PRASA Conference (pp. 1-6). IEEE.[2] Khan, N., Bhanushali, D., Patel, S., & Kotecha, R. (2020). Strengthening e-Education in India using Machine Learning. Available at SSRN 3565255.[3] Abidi, S. M. R., Ni, J., Ge, S., Wang, X., Ding, H., Zhu, W., & Zhang, W. (2020, January). Demystifying help-seeking students interacting multimodal learning environment under machine learning regime. In Eleventh International Conference on Graphics and Image Processing (ICGIP 2019) (Vol. 11373, p. 113732V). International Society for Optics and Photonics.[4] Rajkumar, R., & Ganapathy, V. (2020). Bio-Inspiring Learning Style Chatbot Inventory using Brain Computing Interface to Increase the Efficiency of E-Learning. IEEE Access.[5] Ariza Colpas, P. P., Herrera-Tapias, B., Piñeres-Melo, M., Guerrero-Cuentas, H., Consuegra-Bernal, M., De-la-Hoz Valdiris, E., ... & Morales-Ortega, R. C. (2020). Cyclon language first grade app: technological platform to support the construction of citizen and democratic culture of science, technology and innovation in children and youth groups.[6] Virvou, M., Alepis, E., Tsihrintzis, G. A., & Jain, L. C. (2020). Machine Learning Paradigms. In Machine Learning Paradigms (pp. 1-5). Springer, Cham.[7] Jithendran, A., Karthik, P. P., Santhosh, S., & Naren, J. (2020). Emotion Recognition on E-Learning Community to Improve the Learning Outcomes Using Machine Learning Concepts: A Pilot Study. In Smart Systems and IoT: Innovations in Computing (pp. 521-530). Springer, Singapore.[8] Alenezi, H. S., & Faisal, M. H. (2020). Utilizing crowdsourcing and machine learning in education: Literature review. Education and Information Technologies, 1- 16.[9] Togawa, S., Kondo, A., & Kanenishi, K. (2020, February). Development of Tutoring Assistance Framework Using Machine Learning Technology for Teachers. In International Conference on Intelligent Human Systems Integration (pp. 677-682). Springer, Cham.[10] Moubayed, A., Injadat, M., Shami, A., & Lutfiyya, H. (2020). Student Engagement Level in e-learning Environment: Clustering Using K- means. American Journal of Distance Education, 1-20.[11] Chrysafiadi, K., Virvou, M., & Sakkopoulos, E. (2020). Optimizing Programming Language Learning Through Student Modeling in an Adaptive Web-Based Educational Environment. In Machine Learning Paradigms (pp. 205-223). Springer, Cham.[12] Habib, M. K. (2020). Robotics E-Learning Supported by Collaborative and Distributed Intelligent Environments. In Revolutionizing Education in the Age of AI and Machine Learning (pp. 97-113). IGI Global.[13] Troussas, C., & Virvou, M. (2020). Blending Machine Learning with Krashen’s Theory and Felder-Silverman Model for Student Modeling. In Advances in Social Networking-based Learning (pp. 99-119). Springer, Cham.[14] Boussakssou, M., Hssina, B., & Erittali, M. (2020). Towards an Adaptive E-learning System Based on Q-Learning Algorithm. Procedia Computer Science, 170, 1198-1203.[15] Piñeres-Melo, M. A., Ariza-Colpas, P. P., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). SSwWS: Structural Model of Information Architecture. In International Conference on Swarm Intelligence (pp. 400-410). Springer, Cham.[16] Troussas, C., Krouska, A., & Virvou, M. (2020). Using a multi module model for learning analytics to predict learners’ cognitive states and provide tailored learning pathways and assessment. In Machine Learning Paradigms (pp. 9-22). Springer, Cham[17] Lara, J. A., Aljawarneh, S., & Pamplona, S. (2020). Special issue on the current trends in E-learning Assessment. Journal of Computing in Higher Education, 32(1), 1-8.[18] Zagorskis, V., Gorbunovs, A., & Kapenieks, A. (2020). TELECI ARCHITECTURE FOR MACHINE LEARNING ALGORITHMS INTEGRATION IN AN EXISTING LMS. Emerging Extended Reality Technologies for Industry 4.0: Early Experiences with Conception, Design, Implementation, Evaluation and Deployment, 121.[19] Cerezo, R., Bogarín, A., Esteban, M., & Romero, C. (2020). Process mining for self-regulated learning assessment in e-learning. Journal of Computing in Higher Education, 32(1), 74-88[20] Nilashi, M., Ahmadi, N., Samad, S., Shahmoradi, L., Ahmadi, H., Ibrahim, O., ... & Yadegaridehkordi, E. (2020). Disease Diagnosis Using Machine Learning Techniques: A Review and Classification. Journal of Soft Computing and Decision Support Systems, 7(1), 19-30.[21] Alihodzic, A., Tuba, E., & Tuba, M. (2020). An Improved Extreme Learning Machine Tuning by Flower Pollination Algorithm. In Nature- Inspired Computation in Data Mining and Machine Learning (pp. 95-112). Springer, Cham[22] Rajendra, A. B., Rajkumar, N., Bhat, S. N., Suhas, T. R., & Joshi, S. P. N. (2020). E-Learning Web Accessibility Framework for Deaf/Blind Kannada-Speaking Disabled People. In Proceedings of ICRIC 2019 (pp. 595-604). Springer, Cham.[23] Crowder, J. A., Carbone, J., & Friess, S. (2020). Abductive artificial intelligence learning models. In Artificial Psychology (pp. 51-63). Springer, Cham[24] Ofori, F., Maina, E., & Gitonga, R. (2020). Using Machine Learning Algorithms to Predict Students’ Performance and Improve Learning Outcome: A Literature Based Review. Journal of Information and Technology, 4(1), 33-55.[25] Ariza-Colpas, P. P., Piñeres-Melo, M. A., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). WSIA: Web Ontological Search Engine Based on Smart Agents Applied to Scientific Articles. In International Conference on Swarm Intelligence (pp. 338-347). Springer, Cham.[26] Tokunaga, K., Saeki, C., Taniguchi, S., Nakano, S., Ohta, H., & Nakamura, M. (2020). Nondestructive evaluation of fish meat using ultrasound signals and machine learning methods. Aquacultural Engineering, 89, 102052.[27] Hendradi, P., Abd Ghani, M. K., Mahfuzah, S. N., Yudatama, U., Prabowo, N. A., & Widyanto, R. A. (2020). Artificial Intelligence Influence In Education 4.0 To Architecture Cloud Based E-Learning System. International Journal of Artificial Intelligence Research, 4(1).[28]Naidu, V. R., Singh, B., Al Farei, K., & Al Suqri, N. (2020). Machine Learning for Flipped Teaching in Higher Education—A Reflection. In Sustainable Development and Social Responsibility—Volume 2 (pp. 129-132). Springer, Cham.[29] Guo, Y., Yu, H., Chen, D., & Zhao, Y. Y. (2020). Machine learning distilled metabolite biomarkers for early stage renal injury. Metabolomics, 16(1), 4.[30]Troussas, C., & Virvou, M. (2020). Advances in Social Networking-based Learning: Machine Learning-based User Modelling and Sentiment Analysis (Vol. 181). Springer Nature.PublicationORIGINALStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdfStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdfapplication/pdf805688https://repositorio.cuc.edu.co/bitstreams/fe45d7a5-d5cc-4e47-a8f8-e67aa9aeb971/download0642f12477d9eecb7ff7e759d56f6c98MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/aada53b7-bcbd-4935-afff-98d5b086a48e/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/964e857f-1e84-4176-9ce4-20665ffbe3ec/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdf.jpgStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdf.jpgimage/jpeg50565https://repositorio.cuc.edu.co/bitstreams/57e39c16-e200-4db8-bea1-9f3d40632c74/download94282e47175baa6045c753b98bbd05e8MD54TEXTStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdf.txtStrengthening the teaching of the narrative genre. story and fable in primary school children in the Department of Magdalena – Colombia..pdf.txttext/plain32924https://repositorio.cuc.edu.co/bitstreams/07d6aadf-acfe-4bed-a043-e771e9a705dd/download60dc5aa37cddaf9063bad2e71d18fb7cMD5511323/8694oai:repositorio.cuc.edu.co:11323/86942024-09-17 14:24:59.036http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |