Técnicas de Machine Learning aplicadas al consumo de sustancias psicoactivas ilícitas: Un mapeo sistémico

Introducción— El consumo de sustancias psicoactivas ilícitas es una problemática que se vive a diario, donde personas de diferentes edades se han visto implicadas, resaltando que muchas de estas sustancias generan trastornos tales como, por ejemplo: la Marihuana o cannabis: su consumo afecta la func...

Full description

Autores:
Campo Yule, Jefferson Eduardo
Díaz Mage, Danny alberto
Ordoñez, Hugo Armando
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12375
Acceso en línea:
https://hdl.handle.net/11323/12375
https://doi.org/10.17981/ingecuc.19.2.2023.08
Palabra clave:
Machine learning
sustancias psicoactivas ilegales,
drogas ilegales
modelos predictivos
nuevas sustancias psicoactivas ilegales
machine Learning
illegal psychoactive substances
illegal drugs
treatment
predictive models
new illegal psychoactive substances
Rights
openAccess
License
INGE CUC - 2023
id RCUC2_594c4cae3948135d78588467c10c37e6
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12375
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Técnicas de Machine Learning aplicadas al consumo de sustancias psicoactivas ilícitas: Un mapeo sistémico
dc.title.translated.eng.fl_str_mv Machine Learning techniques applied to the consumption of illegal psychoactive substances: A systematic mapping
title Técnicas de Machine Learning aplicadas al consumo de sustancias psicoactivas ilícitas: Un mapeo sistémico
spellingShingle Técnicas de Machine Learning aplicadas al consumo de sustancias psicoactivas ilícitas: Un mapeo sistémico
Machine learning
sustancias psicoactivas ilegales,
drogas ilegales
modelos predictivos
nuevas sustancias psicoactivas ilegales
machine Learning
illegal psychoactive substances
illegal drugs
treatment
predictive models
new illegal psychoactive substances
title_short Técnicas de Machine Learning aplicadas al consumo de sustancias psicoactivas ilícitas: Un mapeo sistémico
title_full Técnicas de Machine Learning aplicadas al consumo de sustancias psicoactivas ilícitas: Un mapeo sistémico
title_fullStr Técnicas de Machine Learning aplicadas al consumo de sustancias psicoactivas ilícitas: Un mapeo sistémico
title_full_unstemmed Técnicas de Machine Learning aplicadas al consumo de sustancias psicoactivas ilícitas: Un mapeo sistémico
title_sort Técnicas de Machine Learning aplicadas al consumo de sustancias psicoactivas ilícitas: Un mapeo sistémico
dc.creator.fl_str_mv Campo Yule, Jefferson Eduardo
Díaz Mage, Danny alberto
Ordoñez, Hugo Armando
dc.contributor.author.spa.fl_str_mv Campo Yule, Jefferson Eduardo
Díaz Mage, Danny alberto
Ordoñez, Hugo Armando
dc.subject.spa.fl_str_mv Machine learning
sustancias psicoactivas ilegales,
drogas ilegales
modelos predictivos
nuevas sustancias psicoactivas ilegales
topic Machine learning
sustancias psicoactivas ilegales,
drogas ilegales
modelos predictivos
nuevas sustancias psicoactivas ilegales
machine Learning
illegal psychoactive substances
illegal drugs
treatment
predictive models
new illegal psychoactive substances
dc.subject.eng.fl_str_mv machine Learning
illegal psychoactive substances
illegal drugs
treatment
predictive models
new illegal psychoactive substances
description Introducción— El consumo de sustancias psicoactivas ilícitas es una problemática que se vive a diario, donde personas de diferentes edades se han visto implicadas, resaltando que muchas de estas sustancias generan trastornos tales como, por ejemplo: la Marihuana o cannabis: su consumo afecta la función cerebral de manera directa, y particularmente las partes del cerebro responsables de la memoria, el aprendizaje, la atención, la toma de decisiones. El Bazuco: es una sustancia tóxica, cuyos principales riesgos de consumirla se reflejan en el deterioro neurológico y en el organismo, y es muy rápida su disolución en el torrente sanguíneo, aspecto que hace que sea muy adictiva. La Cocaína: su consumo afecta directamente el sistema nervioso y el resto del organismo de forma inmediata, en estas afectaciones se encuentran vasoconstricción, midriasis, hipertermia, taquicardia e hipertensión. La Heroína: es una sustancia altamente adictiva, inicialmente, sus efectos son muy placenteros, lo que propicia una conducta de consumo continuada y repetitiva, además, produce sensaciones de sequedad en la boca, enrojecimiento y acaloramiento de la piel, pesadez en brazos y piernas, náuseas y vómitos, comezón intensa y enturbiamiento de las facultades mentales.  Objetivo— Esta problemática es algo que resalta mucho y de gran impacto en los jóvenes de acuerdo al contexto en el que se encuentren ya que hoy en dia hay mucha facilidad para obtener este tipo de sustancias, por ende, se han planteado una serie de trabajos que abordan desde la inteligencia artificial esa problemática.  Metodología— El presente estudio realiza una revisión de 50 publicaciones relacionadas con el uso de métodos y técnicas de ML aplicadas al consumo de sustancias psicoactivas ilícitas.  Resultados— De las publicaciones incluidas se hallaron temáticas en común por lo que se hace un resumen de los artículos seleccionados por cada temática y se describen brevemente los métodos adoptados, así como también una comparativa entre ellos, anotando los métodos usados, sus resultados y demás factores importantes de la aplicación o modelo en distintas áreas y se concluye con una serie de propuestas sobre las líneas que a futuro podrían encaminar la investigación en este campo.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-04-23 00:00:00
2024-04-09T20:22:08Z
dc.date.available.none.fl_str_mv 2023-04-23 00:00:00
2024-04-09T20:22:08Z
dc.date.issued.none.fl_str_mv 2023-04-23
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12375
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.19.2.2023.08
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.19.2.2023.08
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.19.2.2023.08
2382-4700
url https://hdl.handle.net/11323/12375
https://doi.org/10.17981/ingecuc.19.2.2023.08
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv PAHO. “Abuso de sustancias”, (Consultado en mayo 2, 2023). [En línea . Disponible en https://www.paho.org/es/temas/abuso-sustancias
 ONU. “Comunicado de prensa. El Informe Mundial sobre las Drogas 2022 de la UNODC destaca las tendencias del cannabis posteriores a su legalización, el impacto ambiental de las drogas ilícitas y el consumo de drogas entre las mujeres y las personas jóvenes”, junio 27, 2022. [En línea. Disponible en https://www.unodc.org/unodc/es/press/releases/2022/June/unodc-world-drug-report-2022-highlights-trends-on-cannabis-post-legalization--environmental-impacts-of-illicit-drugs--and-drug-use-among-women-and-youth.html
 MinSalud, Política Integral para la Prevención y Atención del Consumo de Sustancias Psicoactivas. BO, CO: MinSalud, 2019. Recuperado de https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/politica-prevencion-atencion-spa.pdf
 H. Zhou, J. Tang & H. Zheng, “Editorial Machine Learning for Medical Applications,” Sci. World J., pp. 1–2, Nov. 2014. https://doi.org/10.1155/2015/825267
 D. Carrizo y J. Rojas, “Clasificación de prácticas de educción de requisitos en desarrollos ágiles: un mapeo sistemático”, Ingeniare Rev. Chilena Ing., vol. 24, no. 4, pp. 654–662, Mar. 2016. http://dx.doi.org/10.4067/S0718-33052016000400010
 B. Kitchenham, “Procedures for Performing Systematic Reviews,” KEE, UK: KU, Joint Technical Report, 2004. Available from https://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf
 X. Gu, B. Yang, S. Gao, L. Yan, D. Xu & W. Wang, “Application of bi-modal signal in the classification and recognition of drug addiction degree based on machine learning,” Math. Biosci. Eng., vol. 18, no. 5, pp. 6926– 6940, Aug. 2021. https://doi.org/10.3934/MBE.2021344
 M. Hassan, Z. Peya, S. Zaman, J. Angon, A. Keya & A. Dulla, “A Machine Learning Approach to Identify the Correlation and Association among the Students' Drug Addict Behavior,” presented at 11th International Conference on Computing, Communication and Networking Technologies, ICCCNT, KGR, IN, 1-3 Jul. 2020. https://doi.org/10.1109/ICCCNT49239.2020.9225355
 M. Nesa, T. Shaha & Y. Yoon, “Prediction of juvenile crime in Bangladesh due to drug addiction using machine learning and explainable AI techniques,” J. Comput. Soc. Sci., vol. 5, no. 2, pp. 1467–1487, Aug. 2022. https://doi.org/10.1007/s42001-022-00175-7
 A. Arif, S. Sany, F. Sharmin, S. Rahman & T. Habib, “Prediction of addiction to drugs and alcohol using machine learning: A case study on Bangladeshi population,” Int. J. Electr. Comput. Eng., vol. 11, no. 5, pp. 4471–4480, Mar. 2021. https://doi.org/10.11591/ijece.v11i5.pp4471-4480
 H. Gong, C. Xie, C. Yu, N. Sun, H. Lu & Y. Xie, “Psychosocial factors predict the level of substance craving of people with drug addiction: A machine learning approach,” Int. J. Environ. Res. Public Health, vol. 18, no. 22, pp. 1–12, Nov. 2021. https://doi.org/10.3390/ijerph182212175
 U. Islam, E. Haque, D. Alsalman, M. Islam, M. Moni & I. Sarker, “A Machine Learning Model for Predicting Individual Substance Abuse with Associated Risk-Factors,” Ann. Data Sci., pp. 1–28, Mar. 2022. https://doi.org/10.1007/s40745-022-00381-0
 N. Zulkifli, Z. Cob, A. Latif & S. Drus, “A Systematic Review of Machine Learning in Substance Addiction,” in 8th International Conference on Information Technology and Multimedia, ICIMU, SLR, MY, 24-26 Aug. 2020. https://doi.org/10.1109/ICIMU49871.2020.9243581
 J. Mollick & H. Kober, “Computational models of drug use and addiction: A review,” J. Abnorm. Psychol., vol. 129, no. 6, pp. 544–555, Aug. 2020. https://doi.org/10.1037/abn0000503
 Y. Choi & Y. Boo, “Comparing logistic regression models with alternative machine learning methods to predict the risk of drug intoxication mortality,” Int. J. Environ. Res. Public Health, vol. 17, no. 3, pp. 1–10, Jan. 2020. https://doi.org/10.3390/ijerph17030897
 K. Mak, K. Lee & C. Park, “Applications of machine learning in addiction studies: A systematic review,” Psychiat. Res., vol. 275, pp. 53–60, May. 2019. https://doi.org/10.1016/j.psychres.2019.03.001
 B. Chhetri, L. Goyal & M. Mittal, “How machine learning is used to study addiction in digital healthcare: A systematic review,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 2, pp. 1–17, Mar. 2023. https://doi.org/10.1016/j.jjimei.2023.100175
 E. Barenholtz, N. Fitzgerald & W. Hahn, “Machine-learning approaches to substance-abuse research: emerging trends and their implications,” Curr. Opin. Psychiatry, vol. 33, no. 4, pp. 334–342, Jul. 2020. https://doi.org/10.1097/yco.0000000000000611
 A. Anggrawan, C. Satria, C. Nuraini, Lusiana, N. Ayu Dasriani & Mayadi, “Machine Learning for Diagnosing Drug Users and Types of Drugs Used”, IJACSA, vol. 12, no. 11, pp. 111–118, Dec. 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121113
 R. Vunikili, B. Glicksberg, K. Johnson, J. Dudley, L. Subramanian & K. Shameer, “Predictive Modelling of Susceptibility to Substance Abuse, Mortality and Drug-Drug Interactions in Opioid Patients,” Front. Artif. Intell., vol. 4, pp. 1–10, Oct. 2021. https://doi.org/10.3389/frai.2021.742723
 B. Rekabdar, D. Albright, J. McDaniel, S. Talafha & H. Jeong, “From machine learning to deep learning: A comprehensive study of alcohol and drug use disorder,” Healthcare Anal., vol. 2, pp. 1–18, Aug. 2022. https://doi.org/10.1016/j.health.2022.100104
 Y. Jing, Z. Hu, P. Fan, Y. Xue, L. Wang, R. Tarter, L. Kirisci, J. Wang, M. Vanyukov & X. Xie, “Analysis of substance use and its outcomes by machine learning I. Childhood Evaluation of Liability to Substance Use Disorder,” Drug Alcohol Depend., vol. 206, no. 3, pp. 1–16, Oct. 2019. https://doi.org/10.1016/j.drugalcdep.2019.107605
 Z. Hu, Y. Jing, Y. Xue, P. Fan, L. Wang, M. Vanyukov, L. Kirisci, J. Wang, R. Tarter & X-Q. Xie, “Analysis of substance use and its outcomes by machine learning: II. Derivation and prediction of the trajectory of substance use severity,” Drug Alcohol Depend., vol. 206, pp. 1–10, Jan. 2020. https://doi.org/10.1016/j.drugalcdep.2019.107604
 U. Islam, I. Sarker, E. Haque & M. Hoque, “Predicting Individual Substance Abuse Vulnerability using Machine Learning Techniques”, in Hybrid Intelligent Systems, A. Abraham, T. Hanne, O. Castillo, N. Gandhi, T. Rios & T-P.Hong, Eds., CHM, CH: Springer, 2021, pp. 412–421. https://doi.org/10.1007/978-3-030-73050-5_42
 Y. Yuan, J. Huang & K. Yan, “Virtual Reality Therapy and Machine Learning Techniques in Drug Addiction Treatment,” presented at 10th International Conference on Information Technology in Medicine and Education, ITME, QGO, CN, 23-25 Aug. 2019. https://doi.org/10.1109/ITME.2019.00062
 M. Hasan, G. Young, J. Shi, P. Mohite, L. Young, S. Weiner & Noor-E-Alam, “A machine learning based two- stage clinical decision support system for predicting patients’ discontinuation from opioid use disorder treatment: retrospective observational study,” BMC Med. Inform. Decis. Mak., vol. 21, no. 1, pp. 1–21, Nov. 2021. https://doi.org/10.1186/s12911-021-01692-7
 J. Tapia-Galisteo, J. Iniesta, C. Perez-Gandía, G. Garcia-Saez, D. Urgelés, F. Izquierdo & M. Hernando, “Prediction of Cocaine Inpatient Treatment Success Using Machine Learning on High-Dimensional Heterogeneous Data,” IEEE Acc., vol. 8, pp. 218936–218953, Dec. 2020. https://doi.org/10.1109/ACCESS.2020.3041895
 M. Symons, G. Feeney, M. Gallagher, R. Young & J. Connor, “Machine learning vs addiction therapists: A pilot study predicting alcohol dependence treatment outcome from patient data in behavior therapy with adjunctive medication,” J. Subst. Abuse Treat., vol. 99, pp. 156–162, Jan. 2019. https://doi.org/10.1016/j.jsat.2019.01.020
 M. Nasir, N. Summerfield, A. Oztekin, M. Knight, L. Ackerson & S. Carreiro, “Machine learning-based outcome prediction and novel hypotheses generation for substance use disorder treatment,” J. Am. Med. Inform. Assoc., vol. 28, no. 6, pp. 1216–1224, Feb. 2021. https://doi.org/10.1093/jamia/ocaa350
 S. Yip, B. Kiluk & D. Scheinost, “Toward Addiction Prediction: An Overview of Cross-Validated Predictive Modeling Findings and Considerations for Future Neuroimaging Research,” Biol. Psychiatry: Cogn. Neurosci.Neuroimaging, vol. 5, no. 8, pp. 748–758, Aug. 2020. https://doi.org/10.1016/j.bpsc.2019.11.001
 J. Tapia, “Propuesta de modelos predictivos en salud mental para la personalización de terapias de rehabilitación en pacientes con adicciones,” Tesis Doctoral, ETSIT, UPM, MD, ES, 2021. Disponible en https://oa.upm.es/68120/
 Y. Kobayashi & K. Yoshida, “Automated retention time prediction of new psychoactive substances in gas chromatography,” Proc. Comp. Sci., vol. 207, pp. 654–663, Sept. 2022. https://doi.org/10.1016/j.procs.2022.09.120
 J. Klingberg, B. Keen, A. Cawley, D. Pasin & S. Fu, “Developments in high-resolution mass spectrometric analyses of new psychoactive substances,” Arch. Toxicol., vol. 96, no. 4, pp. 949–967, Feb. 2022. https://doi.org/10.1007/s00204-022-03224-2
 E. Olesti, I. De Toma, J. Ramaekers, T. Brunt, M. Carbó, C. Fernández-Avilés, P. Robledo, M. Farré, M. Dierssen, Ó. Pozo y R. De La Torre, “Metabolomics predicts the pharmacological profile of new psychoactive substances,” J. Psychopharmacol., vol. 33, no. 3, pp. 347–354, Nov. 2018. https://doi.org/10.1177/0269881118812103
 S. Wong, L. Ng, J. Tan & J. Pan, “Screening unknown novel psychoactive substances using GC–MS based machine learning,” Forensic Chem., vol. 34, pp. 1–22, Nov. 2022. https://doi.org/10.1016/j.forc.2023.100499
 M. Han, S. Liu, D. Zhang, R. Zhang, D. Liu, H. Xing, D. Sun, L. Gong, P. Cai, W. Tu, J. Chen & Q-N. Hu, “AddictedChem: A Data-Driven Integrated Platform for New Psychoactive Substance Identification,” Mol., vol. 27, no. 12, pp. 1–15, Jun. 2022. https://doi.org/10.3390/molecules27123931
 J. Li, Q. Xu, N. Shah & T. Mackey, “A machine learning approach for the detection and characterization of illicit drug dealers on instagram: Model evaluation study,” J. Med. Internet Res., vol. 21, no. 6, pp. 1–14, Feb. 2019. https://doi.org/10.2196/13803
 S. Hassanpour, N. Tomita, T. DeLise, B. Crosier & L. Marsch, “Identifying substance use risk based on deep neural networks and Instagram social media data,” Neuropsychopharmacol., vol. 44, no. 3, pp. 487–494, Oct. 2018. https://doi.org/10.1038/s41386-018-0247-x
 U. Kursuncu, M. Gaur, U. Lokala, A. Illendula, K. Thirunarayan, R. Daniulaityte, A. Sheth & I. Arpinar, “What’s ur Type? Contextualized Classification of User Types in Marijuana-Related Communications Using Compositional Multiview Embedding,” presented at International Conference on Web Intelligence, ACM/IEEE/WIC, STG, CL, 3-6 Dec. 2018. https://doi.org/10.1109/WI.2018.00-50
 T. Mackey, J. Kalyanam, J. Klugman, E. Kuzmenko & R. Gupta, “Solution to detect, classify, and report illicit online marketing and sales of controlled substances via twitter: Using machine learning and web forensics to combat digital opioid access,” J. Med. Internet Res., vol. 20, no. 4, pp. 1–13, Feb. 2018. https://doi.org/10.2196/10029
 N. Shah, J. Li & T. Mackey, “An unsupervised machine learning approach for the detection and characterization of illicit drug-dealing comments and interactions on Instagram,” Subst. Abus., vol. 43, no. 1, pp. 273–277, Jul. 2022. https://doi.org/10.1080/08897077.2021.1941508
 D-H. Han, S. Lee & D-C. Seo, “Using machine learning to predict opioid misuse among U.S. adolescents,” Prev. Med., vol. 130, pp. 1–10, Nov. 2019. https://doi.org/10.1016/j.ypmed.2019.105886
 Z. Jianqiang, N. Chunming, P. Chengyun, H. Junxun, G. Sheng & C. Jin, “Rapid Recognition of Different Sources of Heroin Drugs by Using a Hand-Held Near-Infrared Spectrometer Based on a Multi-Layer Extreme Learning Machine Algorithm,” J. Braz. Chem. Soc., vol. 34, no. 3, pp. 426–433, Mar. 2023. https://doi.org/10.21577/0103-5053.20220120
 H. Feng, R. Elladki, J. Jiang & G.-W. Wei, “Machine-learning Analysis of Opioid Use Disorder Informed by MOR, DOR, KOR, NOR and ZOR-Based Interactome Networks,” ArXiv, pp. 1–24, Jan. 2023. Available: http://arxiv.org/abs/2301.04815
 J. Prieto, K. Scott, D. McEwen, L. Podewils, A. Al-Tayyib, J. Robinson, D. Edwards, S. Foldy, J. Shlay & A. Davidson, “The detection of opioid misuse and heroin use from paramedic response documentation: Machine learning for improved surveillance,” J. Med. Internet Res., vol. 22, no. 1, pp. 1–8, Jul. 2019. https://doi.org/10.2196/15645
 J. Davis, P. Rao, B. Dilkina, J. Prindle, D. Eddie, N. Christie, G. DiGuiseppi, S. Saba, C. Ring & M. Dennis, “Identifying individual and environmental predictors of opioid and psychostimulant use among adolescents and young adults following outpatient treatment,” Drug Alcohol Dep., vol. 233, pp. 1–10, Apr. 2022. https://doi.org/10.1016/j.drugalcdep.2022.109359
 D. Cipriano, Y. Melo, M. Zambrano, R. Ruiz y J. Deza, “A machine learning approach to find the determinants of Peruvian coca illegal crops,” Decis. Sci. Lett., vol. 11, no. 2, pp. 127–136, Dec. 2021. http://dx.doi.org/10.5267/j.dsl.2021.12.003
 H. Feng, K. Gao, D. Chen, A. Robison, E. Ellsworth & G.-W. Wei, “Machine learning analysis of cocaine addiction informed by DAT, SERT, and NET-based interactome networks,” ArXiv, pp. 1–23, Jan. 2022. Available: http://arxiv.org/abs/2201.00114
 K. Gao, D. Chen, A. Robison & G.-W. Wei, “Proteome-Informed Machine Learning Studies of Cocaine Addiction,” J. Phys. Chem. Lett., vol. 12, no. 45, pp. 11122–11134, Nov. 2021. https://doi.org/10.1021/acs.jpclett.1c03133
 R. Suchting, J. Vincent, S. Lane, C. Green, J. Schmitz & M. Wardle, “Using a data science approach to predict cocaine use frequency from depressive symptoms,” Drug Alcohol Dep., vol. 194, pp. 310–317, Jan. 2019. https://doi.org/10.1016/j.drugalcdep.2018.10.029
 R. Kranenburg, J. Verduin, Y. Weesepoel, M. Alewijn, M. Heerschop, G. Koomen, P. Keizers, F. Bakker, F. Wallace, A. van Esch, A. Hulsbergen & A. van Asten, “Rapid and robust on-scene detection of cocaine in street samples using a handheld near-infrared spectrometer and machine learning algorithms,” Drug Test Anal., vol. 12, no. 10, pp. 1404–1418, Jul. 2020. https://doi.org/10.1002/dta.2895
 J. Choi, J. Chung & J. Choi, “Exploring impact of marijuana (Cannabis) abuse on adults using machine learning,” Int. J. Environ. Res. Public Health, vol. 18, no. 19, pp. 1–12. Sep. 2021. https://doi.org/10.3390/ijerph181910357
 T. Parekh & F. Fahim, “Building risk prediction models for daily use of marijuana using machine learning techniques,” Drug Alcohol Dep., vol. 225, pp. 1–10, Aug. 2021. https://doi.org/10.1016/j.drugalcdep.2021.108789
 D-H. Han & D-C. Seo, “Identifying risk profiles for marijuana vaping among U.S. young adults by recreational marijuana legalization status: A machine learning approach,” Drug Alcohol Dep., vol. 232, pp. 1–10, Mar. 2022. https://doi.org/10.1016/j.drugalcdep.2022.109330
 L. Zoboroski, T. Wagner & B. Langhals, “Classical and neural network machine learning to determine the risk of marijuana use,” Int. J. Environ. Res. Public Health, vol. 18, no. 14, pp. 1–15. Jul. 2021. https://doi.org/10.3390/ijerph18147466
 S. Negriff, B. Dilkina, L. Matai & E. Rice, “Using machine learning to determine the shared and unique risk factors for marijuana use among child-welfare versus community adolescents,” PLoS One, vol. 17, no. 9, pp. 1–19, Sept. 2022. https://doi.org/10.1371/journal.pone.0274998
N.-E. Quemá-Taimbud, M.-E. Mendoza-Becerra y O.-F. Bedoya-Leyva, “Initialization and Local Search Methods Applied to the Set Covering Problem: A Systematic Mapping,” Rev. Fac. Ing., vol. 32, no. 63, pp. 1–20, Feb. 2023. https://doi.org/10.19053/01211129.v32.n63.2023.15235
dc.relation.citationendpage.none.fl_str_mv 97–118
dc.relation.citationstartpage.none.fl_str_mv 97–118
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 19
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/4933/4975
https://revistascientificas.cuc.edu.co/ingecuc/article/download/4933/5122
https://revistascientificas.cuc.edu.co/ingecuc/article/download/4933/5123
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2023 : (Julio-Diciembre)
dc.rights.spa.fl_str_mv INGE CUC - 2023
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2023
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
text/xml
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/4933
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/803036fa-5cb8-4cdf-9f7f-df26bd3c547d/download
bitstream.checksum.fl_str_mv 324ebcf71ad850759306b8854a6f2d33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760847205171200
spelling Campo Yule, Jefferson EduardoDíaz Mage, Danny albertoOrdoñez, Hugo Armando2023-04-23 00:00:002024-04-09T20:22:08Z2023-04-23 00:00:002024-04-09T20:22:08Z2023-04-230122-6517https://hdl.handle.net/11323/12375https://doi.org/10.17981/ingecuc.19.2.2023.0810.17981/ingecuc.19.2.2023.082382-4700Introducción— El consumo de sustancias psicoactivas ilícitas es una problemática que se vive a diario, donde personas de diferentes edades se han visto implicadas, resaltando que muchas de estas sustancias generan trastornos tales como, por ejemplo: la Marihuana o cannabis: su consumo afecta la función cerebral de manera directa, y particularmente las partes del cerebro responsables de la memoria, el aprendizaje, la atención, la toma de decisiones. El Bazuco: es una sustancia tóxica, cuyos principales riesgos de consumirla se reflejan en el deterioro neurológico y en el organismo, y es muy rápida su disolución en el torrente sanguíneo, aspecto que hace que sea muy adictiva. La Cocaína: su consumo afecta directamente el sistema nervioso y el resto del organismo de forma inmediata, en estas afectaciones se encuentran vasoconstricción, midriasis, hipertermia, taquicardia e hipertensión. La Heroína: es una sustancia altamente adictiva, inicialmente, sus efectos son muy placenteros, lo que propicia una conducta de consumo continuada y repetitiva, además, produce sensaciones de sequedad en la boca, enrojecimiento y acaloramiento de la piel, pesadez en brazos y piernas, náuseas y vómitos, comezón intensa y enturbiamiento de las facultades mentales.  Objetivo— Esta problemática es algo que resalta mucho y de gran impacto en los jóvenes de acuerdo al contexto en el que se encuentren ya que hoy en dia hay mucha facilidad para obtener este tipo de sustancias, por ende, se han planteado una serie de trabajos que abordan desde la inteligencia artificial esa problemática.  Metodología— El presente estudio realiza una revisión de 50 publicaciones relacionadas con el uso de métodos y técnicas de ML aplicadas al consumo de sustancias psicoactivas ilícitas.  Resultados— De las publicaciones incluidas se hallaron temáticas en común por lo que se hace un resumen de los artículos seleccionados por cada temática y se describen brevemente los métodos adoptados, así como también una comparativa entre ellos, anotando los métodos usados, sus resultados y demás factores importantes de la aplicación o modelo en distintas áreas y se concluye con una serie de propuestas sobre las líneas que a futuro podrían encaminar la investigación en este campo.Introduction— The consumption of illicit psychoactive substances is a problem experienced every day, by people of different ages who have been involved in it, highlighting that many of these substances generate disorders such as, for example: Marijuana or cannabis: its consumption affects brain function directly, and particularly the parts of the brain responsible for memory, learning, attention, decision making. Bazuco: it is a toxic substance, which main risks of consumption are reflected in the neurological deterioration and in the organism, and its dissolution in the bloodstream is very fast, an aspect that makes it very addictive. Cocaine: its consumption, directly affects the nervous system and the rest of the organism immediately, these affectations include vasoconstriction, mydriasis, hyperthermia, tachycardia and hypertension. Heroin: is a highly addictive substance, initially, its effects are very pleasant, which leads to a continuous and repetitive consumption behavior, in addition, it produces sensations of dry mouth, reddening and heating of the skin, heaviness in arms and legs, nausea and vomiting, intense itching and clouding of the mental faculties. Objective— This problem is something that stands out a lot and has a great impact on young people according to the context they are in, since nowadays it is very easy to obtain this type of substances, therefore, a series of works have been proposed that address this problem from artificial intelligence.  Methodology— The current study is a review of 50 publications related to the use of ML methods and techniques applied to the consumption of illicit psychoactive substances. Results— From the publications included, common themes were found, so a summary is made of the articles selected for each theme and the methods adopted are briefly described, as well as a comparison between them, noting the methods used, their results and other important factors of the application or model in different areas, and concluding with a series of proposals on the lines that could guide future research in this field.application/pdftext/htmltext/xmlspaUniversidad de la CostaINGE CUC - 2023http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/4933Machine learningsustancias psicoactivas ilegales,drogas ilegalesmodelos predictivosnuevas sustancias psicoactivas ilegalesmachine Learningillegal psychoactive substancesillegal drugstreatmentpredictive modelsnew illegal psychoactive substancesTécnicas de Machine Learning aplicadas al consumo de sustancias psicoactivas ilícitas: Un mapeo sistémicoMachine Learning techniques applied to the consumption of illegal psychoactive substances: A systematic mappingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucPAHO. “Abuso de sustancias”, (Consultado en mayo 2, 2023). [En línea . Disponible en https://www.paho.org/es/temas/abuso-sustancias ONU. “Comunicado de prensa. El Informe Mundial sobre las Drogas 2022 de la UNODC destaca las tendencias del cannabis posteriores a su legalización, el impacto ambiental de las drogas ilícitas y el consumo de drogas entre las mujeres y las personas jóvenes”, junio 27, 2022. [En línea. Disponible en https://www.unodc.org/unodc/es/press/releases/2022/June/unodc-world-drug-report-2022-highlights-trends-on-cannabis-post-legalization--environmental-impacts-of-illicit-drugs--and-drug-use-among-women-and-youth.html MinSalud, Política Integral para la Prevención y Atención del Consumo de Sustancias Psicoactivas. BO, CO: MinSalud, 2019. Recuperado de https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/politica-prevencion-atencion-spa.pdf H. Zhou, J. Tang & H. Zheng, “Editorial Machine Learning for Medical Applications,” Sci. World J., pp. 1–2, Nov. 2014. https://doi.org/10.1155/2015/825267 D. Carrizo y J. Rojas, “Clasificación de prácticas de educción de requisitos en desarrollos ágiles: un mapeo sistemático”, Ingeniare Rev. Chilena Ing., vol. 24, no. 4, pp. 654–662, Mar. 2016. http://dx.doi.org/10.4067/S0718-33052016000400010 B. Kitchenham, “Procedures for Performing Systematic Reviews,” KEE, UK: KU, Joint Technical Report, 2004. Available from https://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf X. Gu, B. Yang, S. Gao, L. Yan, D. Xu & W. Wang, “Application of bi-modal signal in the classification and recognition of drug addiction degree based on machine learning,” Math. Biosci. Eng., vol. 18, no. 5, pp. 6926– 6940, Aug. 2021. https://doi.org/10.3934/MBE.2021344 M. Hassan, Z. Peya, S. Zaman, J. Angon, A. Keya & A. Dulla, “A Machine Learning Approach to Identify the Correlation and Association among the Students' Drug Addict Behavior,” presented at 11th International Conference on Computing, Communication and Networking Technologies, ICCCNT, KGR, IN, 1-3 Jul. 2020. https://doi.org/10.1109/ICCCNT49239.2020.9225355 M. Nesa, T. Shaha & Y. Yoon, “Prediction of juvenile crime in Bangladesh due to drug addiction using machine learning and explainable AI techniques,” J. Comput. Soc. Sci., vol. 5, no. 2, pp. 1467–1487, Aug. 2022. https://doi.org/10.1007/s42001-022-00175-7 A. Arif, S. Sany, F. Sharmin, S. Rahman & T. Habib, “Prediction of addiction to drugs and alcohol using machine learning: A case study on Bangladeshi population,” Int. J. Electr. Comput. Eng., vol. 11, no. 5, pp. 4471–4480, Mar. 2021. https://doi.org/10.11591/ijece.v11i5.pp4471-4480 H. Gong, C. Xie, C. Yu, N. Sun, H. Lu & Y. Xie, “Psychosocial factors predict the level of substance craving of people with drug addiction: A machine learning approach,” Int. J. Environ. Res. Public Health, vol. 18, no. 22, pp. 1–12, Nov. 2021. https://doi.org/10.3390/ijerph182212175 U. Islam, E. Haque, D. Alsalman, M. Islam, M. Moni & I. Sarker, “A Machine Learning Model for Predicting Individual Substance Abuse with Associated Risk-Factors,” Ann. Data Sci., pp. 1–28, Mar. 2022. https://doi.org/10.1007/s40745-022-00381-0 N. Zulkifli, Z. Cob, A. Latif & S. Drus, “A Systematic Review of Machine Learning in Substance Addiction,” in 8th International Conference on Information Technology and Multimedia, ICIMU, SLR, MY, 24-26 Aug. 2020. https://doi.org/10.1109/ICIMU49871.2020.9243581 J. Mollick & H. Kober, “Computational models of drug use and addiction: A review,” J. Abnorm. Psychol., vol. 129, no. 6, pp. 544–555, Aug. 2020. https://doi.org/10.1037/abn0000503 Y. Choi & Y. Boo, “Comparing logistic regression models with alternative machine learning methods to predict the risk of drug intoxication mortality,” Int. J. Environ. Res. Public Health, vol. 17, no. 3, pp. 1–10, Jan. 2020. https://doi.org/10.3390/ijerph17030897 K. Mak, K. Lee & C. Park, “Applications of machine learning in addiction studies: A systematic review,” Psychiat. Res., vol. 275, pp. 53–60, May. 2019. https://doi.org/10.1016/j.psychres.2019.03.001 B. Chhetri, L. Goyal & M. Mittal, “How machine learning is used to study addiction in digital healthcare: A systematic review,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 2, pp. 1–17, Mar. 2023. https://doi.org/10.1016/j.jjimei.2023.100175 E. Barenholtz, N. Fitzgerald & W. Hahn, “Machine-learning approaches to substance-abuse research: emerging trends and their implications,” Curr. Opin. Psychiatry, vol. 33, no. 4, pp. 334–342, Jul. 2020. https://doi.org/10.1097/yco.0000000000000611 A. Anggrawan, C. Satria, C. Nuraini, Lusiana, N. Ayu Dasriani & Mayadi, “Machine Learning for Diagnosing Drug Users and Types of Drugs Used”, IJACSA, vol. 12, no. 11, pp. 111–118, Dec. 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121113 R. Vunikili, B. Glicksberg, K. Johnson, J. Dudley, L. Subramanian & K. Shameer, “Predictive Modelling of Susceptibility to Substance Abuse, Mortality and Drug-Drug Interactions in Opioid Patients,” Front. Artif. Intell., vol. 4, pp. 1–10, Oct. 2021. https://doi.org/10.3389/frai.2021.742723 B. Rekabdar, D. Albright, J. McDaniel, S. Talafha & H. Jeong, “From machine learning to deep learning: A comprehensive study of alcohol and drug use disorder,” Healthcare Anal., vol. 2, pp. 1–18, Aug. 2022. https://doi.org/10.1016/j.health.2022.100104 Y. Jing, Z. Hu, P. Fan, Y. Xue, L. Wang, R. Tarter, L. Kirisci, J. Wang, M. Vanyukov & X. Xie, “Analysis of substance use and its outcomes by machine learning I. Childhood Evaluation of Liability to Substance Use Disorder,” Drug Alcohol Depend., vol. 206, no. 3, pp. 1–16, Oct. 2019. https://doi.org/10.1016/j.drugalcdep.2019.107605 Z. Hu, Y. Jing, Y. Xue, P. Fan, L. Wang, M. Vanyukov, L. Kirisci, J. Wang, R. Tarter & X-Q. Xie, “Analysis of substance use and its outcomes by machine learning: II. Derivation and prediction of the trajectory of substance use severity,” Drug Alcohol Depend., vol. 206, pp. 1–10, Jan. 2020. https://doi.org/10.1016/j.drugalcdep.2019.107604 U. Islam, I. Sarker, E. Haque & M. Hoque, “Predicting Individual Substance Abuse Vulnerability using Machine Learning Techniques”, in Hybrid Intelligent Systems, A. Abraham, T. Hanne, O. Castillo, N. Gandhi, T. Rios & T-P.Hong, Eds., CHM, CH: Springer, 2021, pp. 412–421. https://doi.org/10.1007/978-3-030-73050-5_42 Y. Yuan, J. Huang & K. Yan, “Virtual Reality Therapy and Machine Learning Techniques in Drug Addiction Treatment,” presented at 10th International Conference on Information Technology in Medicine and Education, ITME, QGO, CN, 23-25 Aug. 2019. https://doi.org/10.1109/ITME.2019.00062 M. Hasan, G. Young, J. Shi, P. Mohite, L. Young, S. Weiner & Noor-E-Alam, “A machine learning based two- stage clinical decision support system for predicting patients’ discontinuation from opioid use disorder treatment: retrospective observational study,” BMC Med. Inform. Decis. Mak., vol. 21, no. 1, pp. 1–21, Nov. 2021. https://doi.org/10.1186/s12911-021-01692-7 J. Tapia-Galisteo, J. Iniesta, C. Perez-Gandía, G. Garcia-Saez, D. Urgelés, F. Izquierdo & M. Hernando, “Prediction of Cocaine Inpatient Treatment Success Using Machine Learning on High-Dimensional Heterogeneous Data,” IEEE Acc., vol. 8, pp. 218936–218953, Dec. 2020. https://doi.org/10.1109/ACCESS.2020.3041895 M. Symons, G. Feeney, M. Gallagher, R. Young & J. Connor, “Machine learning vs addiction therapists: A pilot study predicting alcohol dependence treatment outcome from patient data in behavior therapy with adjunctive medication,” J. Subst. Abuse Treat., vol. 99, pp. 156–162, Jan. 2019. https://doi.org/10.1016/j.jsat.2019.01.020 M. Nasir, N. Summerfield, A. Oztekin, M. Knight, L. Ackerson & S. Carreiro, “Machine learning-based outcome prediction and novel hypotheses generation for substance use disorder treatment,” J. Am. Med. Inform. Assoc., vol. 28, no. 6, pp. 1216–1224, Feb. 2021. https://doi.org/10.1093/jamia/ocaa350 S. Yip, B. Kiluk & D. Scheinost, “Toward Addiction Prediction: An Overview of Cross-Validated Predictive Modeling Findings and Considerations for Future Neuroimaging Research,” Biol. Psychiatry: Cogn. Neurosci.Neuroimaging, vol. 5, no. 8, pp. 748–758, Aug. 2020. https://doi.org/10.1016/j.bpsc.2019.11.001 J. Tapia, “Propuesta de modelos predictivos en salud mental para la personalización de terapias de rehabilitación en pacientes con adicciones,” Tesis Doctoral, ETSIT, UPM, MD, ES, 2021. Disponible en https://oa.upm.es/68120/ Y. Kobayashi & K. Yoshida, “Automated retention time prediction of new psychoactive substances in gas chromatography,” Proc. Comp. Sci., vol. 207, pp. 654–663, Sept. 2022. https://doi.org/10.1016/j.procs.2022.09.120 J. Klingberg, B. Keen, A. Cawley, D. Pasin & S. Fu, “Developments in high-resolution mass spectrometric analyses of new psychoactive substances,” Arch. Toxicol., vol. 96, no. 4, pp. 949–967, Feb. 2022. https://doi.org/10.1007/s00204-022-03224-2 E. Olesti, I. De Toma, J. Ramaekers, T. Brunt, M. Carbó, C. Fernández-Avilés, P. Robledo, M. Farré, M. Dierssen, Ó. Pozo y R. De La Torre, “Metabolomics predicts the pharmacological profile of new psychoactive substances,” J. Psychopharmacol., vol. 33, no. 3, pp. 347–354, Nov. 2018. https://doi.org/10.1177/0269881118812103 S. Wong, L. Ng, J. Tan & J. Pan, “Screening unknown novel psychoactive substances using GC–MS based machine learning,” Forensic Chem., vol. 34, pp. 1–22, Nov. 2022. https://doi.org/10.1016/j.forc.2023.100499 M. Han, S. Liu, D. Zhang, R. Zhang, D. Liu, H. Xing, D. Sun, L. Gong, P. Cai, W. Tu, J. Chen & Q-N. Hu, “AddictedChem: A Data-Driven Integrated Platform for New Psychoactive Substance Identification,” Mol., vol. 27, no. 12, pp. 1–15, Jun. 2022. https://doi.org/10.3390/molecules27123931 J. Li, Q. Xu, N. Shah & T. Mackey, “A machine learning approach for the detection and characterization of illicit drug dealers on instagram: Model evaluation study,” J. Med. Internet Res., vol. 21, no. 6, pp. 1–14, Feb. 2019. https://doi.org/10.2196/13803 S. Hassanpour, N. Tomita, T. DeLise, B. Crosier & L. Marsch, “Identifying substance use risk based on deep neural networks and Instagram social media data,” Neuropsychopharmacol., vol. 44, no. 3, pp. 487–494, Oct. 2018. https://doi.org/10.1038/s41386-018-0247-x U. Kursuncu, M. Gaur, U. Lokala, A. Illendula, K. Thirunarayan, R. Daniulaityte, A. Sheth & I. Arpinar, “What’s ur Type? Contextualized Classification of User Types in Marijuana-Related Communications Using Compositional Multiview Embedding,” presented at International Conference on Web Intelligence, ACM/IEEE/WIC, STG, CL, 3-6 Dec. 2018. https://doi.org/10.1109/WI.2018.00-50 T. Mackey, J. Kalyanam, J. Klugman, E. Kuzmenko & R. Gupta, “Solution to detect, classify, and report illicit online marketing and sales of controlled substances via twitter: Using machine learning and web forensics to combat digital opioid access,” J. Med. Internet Res., vol. 20, no. 4, pp. 1–13, Feb. 2018. https://doi.org/10.2196/10029 N. Shah, J. Li & T. Mackey, “An unsupervised machine learning approach for the detection and characterization of illicit drug-dealing comments and interactions on Instagram,” Subst. Abus., vol. 43, no. 1, pp. 273–277, Jul. 2022. https://doi.org/10.1080/08897077.2021.1941508 D-H. Han, S. Lee & D-C. Seo, “Using machine learning to predict opioid misuse among U.S. adolescents,” Prev. Med., vol. 130, pp. 1–10, Nov. 2019. https://doi.org/10.1016/j.ypmed.2019.105886 Z. Jianqiang, N. Chunming, P. Chengyun, H. Junxun, G. Sheng & C. Jin, “Rapid Recognition of Different Sources of Heroin Drugs by Using a Hand-Held Near-Infrared Spectrometer Based on a Multi-Layer Extreme Learning Machine Algorithm,” J. Braz. Chem. Soc., vol. 34, no. 3, pp. 426–433, Mar. 2023. https://doi.org/10.21577/0103-5053.20220120 H. Feng, R. Elladki, J. Jiang & G.-W. Wei, “Machine-learning Analysis of Opioid Use Disorder Informed by MOR, DOR, KOR, NOR and ZOR-Based Interactome Networks,” ArXiv, pp. 1–24, Jan. 2023. Available: http://arxiv.org/abs/2301.04815 J. Prieto, K. Scott, D. McEwen, L. Podewils, A. Al-Tayyib, J. Robinson, D. Edwards, S. Foldy, J. Shlay & A. Davidson, “The detection of opioid misuse and heroin use from paramedic response documentation: Machine learning for improved surveillance,” J. Med. Internet Res., vol. 22, no. 1, pp. 1–8, Jul. 2019. https://doi.org/10.2196/15645 J. Davis, P. Rao, B. Dilkina, J. Prindle, D. Eddie, N. Christie, G. DiGuiseppi, S. Saba, C. Ring & M. Dennis, “Identifying individual and environmental predictors of opioid and psychostimulant use among adolescents and young adults following outpatient treatment,” Drug Alcohol Dep., vol. 233, pp. 1–10, Apr. 2022. https://doi.org/10.1016/j.drugalcdep.2022.109359 D. Cipriano, Y. Melo, M. Zambrano, R. Ruiz y J. Deza, “A machine learning approach to find the determinants of Peruvian coca illegal crops,” Decis. Sci. Lett., vol. 11, no. 2, pp. 127–136, Dec. 2021. http://dx.doi.org/10.5267/j.dsl.2021.12.003 H. Feng, K. Gao, D. Chen, A. Robison, E. Ellsworth & G.-W. Wei, “Machine learning analysis of cocaine addiction informed by DAT, SERT, and NET-based interactome networks,” ArXiv, pp. 1–23, Jan. 2022. Available: http://arxiv.org/abs/2201.00114 K. Gao, D. Chen, A. Robison & G.-W. Wei, “Proteome-Informed Machine Learning Studies of Cocaine Addiction,” J. Phys. Chem. Lett., vol. 12, no. 45, pp. 11122–11134, Nov. 2021. https://doi.org/10.1021/acs.jpclett.1c03133 R. Suchting, J. Vincent, S. Lane, C. Green, J. Schmitz & M. Wardle, “Using a data science approach to predict cocaine use frequency from depressive symptoms,” Drug Alcohol Dep., vol. 194, pp. 310–317, Jan. 2019. https://doi.org/10.1016/j.drugalcdep.2018.10.029 R. Kranenburg, J. Verduin, Y. Weesepoel, M. Alewijn, M. Heerschop, G. Koomen, P. Keizers, F. Bakker, F. Wallace, A. van Esch, A. Hulsbergen & A. van Asten, “Rapid and robust on-scene detection of cocaine in street samples using a handheld near-infrared spectrometer and machine learning algorithms,” Drug Test Anal., vol. 12, no. 10, pp. 1404–1418, Jul. 2020. https://doi.org/10.1002/dta.2895 J. Choi, J. Chung & J. Choi, “Exploring impact of marijuana (Cannabis) abuse on adults using machine learning,” Int. J. Environ. Res. Public Health, vol. 18, no. 19, pp. 1–12. Sep. 2021. https://doi.org/10.3390/ijerph181910357 T. Parekh & F. Fahim, “Building risk prediction models for daily use of marijuana using machine learning techniques,” Drug Alcohol Dep., vol. 225, pp. 1–10, Aug. 2021. https://doi.org/10.1016/j.drugalcdep.2021.108789 D-H. Han & D-C. Seo, “Identifying risk profiles for marijuana vaping among U.S. young adults by recreational marijuana legalization status: A machine learning approach,” Drug Alcohol Dep., vol. 232, pp. 1–10, Mar. 2022. https://doi.org/10.1016/j.drugalcdep.2022.109330 L. Zoboroski, T. Wagner & B. Langhals, “Classical and neural network machine learning to determine the risk of marijuana use,” Int. J. Environ. Res. Public Health, vol. 18, no. 14, pp. 1–15. Jul. 2021. https://doi.org/10.3390/ijerph18147466 S. Negriff, B. Dilkina, L. Matai & E. Rice, “Using machine learning to determine the shared and unique risk factors for marijuana use among child-welfare versus community adolescents,” PLoS One, vol. 17, no. 9, pp. 1–19, Sept. 2022. https://doi.org/10.1371/journal.pone.0274998N.-E. Quemá-Taimbud, M.-E. Mendoza-Becerra y O.-F. Bedoya-Leyva, “Initialization and Local Search Methods Applied to the Set Covering Problem: A Systematic Mapping,” Rev. Fac. Ing., vol. 32, no. 63, pp. 1–20, Feb. 2023. https://doi.org/10.19053/01211129.v32.n63.2023.1523597–11897–118219https://revistascientificas.cuc.edu.co/ingecuc/article/download/4933/4975https://revistascientificas.cuc.edu.co/ingecuc/article/download/4933/5122https://revistascientificas.cuc.edu.co/ingecuc/article/download/4933/5123Núm. 2 , Año 2023 : (Julio-Diciembre)PublicationOREORE.xmltext/xml2707https://repositorio.cuc.edu.co/bitstreams/803036fa-5cb8-4cdf-9f7f-df26bd3c547d/download324ebcf71ad850759306b8854a6f2d33MD5111323/12375oai:repositorio.cuc.edu.co:11323/123752024-09-17 14:10:11.502http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2023metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co