Development of a Machine Learning (ML)-based computational model to estimate the engineering properties of Portland Cement Concrete (PCC)
Portland cement concrete (PCC) is the construction material most used worldwide. Hence, its proper characterization is fundamental for the daily-basis engineering practice. Nonetheless, the experimental measurements of the PCC’s engineering properties (i.e., Poisson’s Ratio -v-, Elastic Modulus -E-,...
- Autores:
-
Polo Mendoza, Rodrigo
Martínez Arguelles, Gilberto
Peñabaena Niebles, Rita
Duque, Jose
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13827
- Acceso en línea:
- https://hdl.handle.net/11323/13827
https://repositorio.cuc.edu.co/
- Palabra clave:
- Computational modelling
Concrete structures
Construction materials
Deep neural networks
Machine learning
Portland cement concrete
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_3cc1056bc44b4c0bf486735d07ab2310 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13827 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Development of a Machine Learning (ML)-based computational model to estimate the engineering properties of Portland Cement Concrete (PCC) |
title |
Development of a Machine Learning (ML)-based computational model to estimate the engineering properties of Portland Cement Concrete (PCC) |
spellingShingle |
Development of a Machine Learning (ML)-based computational model to estimate the engineering properties of Portland Cement Concrete (PCC) Computational modelling Concrete structures Construction materials Deep neural networks Machine learning Portland cement concrete |
title_short |
Development of a Machine Learning (ML)-based computational model to estimate the engineering properties of Portland Cement Concrete (PCC) |
title_full |
Development of a Machine Learning (ML)-based computational model to estimate the engineering properties of Portland Cement Concrete (PCC) |
title_fullStr |
Development of a Machine Learning (ML)-based computational model to estimate the engineering properties of Portland Cement Concrete (PCC) |
title_full_unstemmed |
Development of a Machine Learning (ML)-based computational model to estimate the engineering properties of Portland Cement Concrete (PCC) |
title_sort |
Development of a Machine Learning (ML)-based computational model to estimate the engineering properties of Portland Cement Concrete (PCC) |
dc.creator.fl_str_mv |
Polo Mendoza, Rodrigo Martínez Arguelles, Gilberto Peñabaena Niebles, Rita Duque, Jose |
dc.contributor.author.none.fl_str_mv |
Polo Mendoza, Rodrigo Martínez Arguelles, Gilberto Peñabaena Niebles, Rita Duque, Jose |
dc.subject.proposal.eng.fl_str_mv |
Computational modelling Concrete structures Construction materials Deep neural networks Machine learning Portland cement concrete |
topic |
Computational modelling Concrete structures Construction materials Deep neural networks Machine learning Portland cement concrete |
description |
Portland cement concrete (PCC) is the construction material most used worldwide. Hence, its proper characterization is fundamental for the daily-basis engineering practice. Nonetheless, the experimental measurements of the PCC’s engineering properties (i.e., Poisson’s Ratio -v-, Elastic Modulus -E-, Compressive Strength -ComS-, and Tensile Strength -TenS-) consume considerable amounts of time and financial resources. Therefore, the development of high-precision indirect methods is fundamental. Accordingly, this research proposes a computational model based on deep neural networks (DNNs) to simultaneously predict the v, E, ComS, and TenS. For this purpose, the Long-Term Pavement Performance database was employed as the data source. In this regard, the mix design parameters of the PCC are adopted as input variables. The performance of the DNN model was evaluated with 1:1 lines, goodness-of-fit parameters, Shapley additive explanations assessments, and running time analysis. The results demonstrated that the proposed DNN model exhibited an exactitude higher than 99.8%, with forecasting errors close to zero (0). Consequently, the machine learning-based computational model designed in this investigation is a helpful tool for estimating the PCC’s engineering properties when laboratory tests are not attainable. Thus, the main novelty of this study is creating a robust model to determine the v, E, ComS, and TenS by solely considering the mix design parameters. Likewise, the central contribution to the state-of-the-art achieved by the present research effort is the public launch of the developed computational tool through an open-access GitHub repository, which can be utilized by engineers, designers, agencies, and other stakeholders. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-25T18:03:51Z |
dc.date.available.none.fl_str_mv |
2024-11-25T18:03:51Z |
dc.date.issued.none.fl_str_mv |
2024-05-03 |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Polo-Mendoza, R., Martinez-Arguelles, G., Peñabaena-Niebles, R. et al. Development of a Machine Learning (ML)-Based Computational Model to Estimate the Engineering Properties of Portland Cement Concrete (PCC). Arab J Sci Eng 49, 14351–14365 (2024). https://doi.org/10.1007/s13369-024-08794-0 |
dc.identifier.issn.none.fl_str_mv |
2193-567X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13827 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s13369-024-08794-0 |
dc.identifier.eissn.none.fl_str_mv |
2191-4281 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Polo-Mendoza, R., Martinez-Arguelles, G., Peñabaena-Niebles, R. et al. Development of a Machine Learning (ML)-Based Computational Model to Estimate the Engineering Properties of Portland Cement Concrete (PCC). Arab J Sci Eng 49, 14351–14365 (2024). https://doi.org/10.1007/s13369-024-08794-0 2193-567X 10.1007/s13369-024-08794-0 2191-4281 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13827 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Arabian journal for science and engineering |
dc.relation.references.none.fl_str_mv |
Liu, Y.; Du, P.; Tan, K.H.; Du, Y.; Su, J.; Shi, C.: Experimental and analytical studies on residual flexural behaviour of reinforced alkali-activated slag-based concrete beams after exposure to fire. Eng. Struct. 298, 1–14 (2024). https://doi.org/10.1016/j.engstruct. 2023.117035 Singh, A.; Bhadauria, S.S.; Thakare, A.A.; Kumar, A.; Mudgal, M.; Chaudhary, S.: Durability assessment of mechanochemically activated geopolymer concrete with a low molarity alkali solution. Case Stud. Constr. Mater. 20, 1–19 (2024). https://doi.org/10.1016/ j.cscm.2023.e02715 Singh, P.R.; Vanapalli, K.R.; Jadda, K.: Durability assessment of fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates against acid and sulfate attack. J. Build. Eng. 82, 1–17 (2024). https://doi.org/10.1016/j.jobe.2023.108354 Polo-Mendoza, R.; Mora, O.; Duque, J.; Turbay, E.; MartinezArguelles, G.; Fuentes, L.; Guerrero, O.; Perez, S.: Environmental and economic feasibility of implementing perpetual pavements (PPs) against conventional pavements: a case study of Barranquilla city, Colombia. Case Stud. Constr. Mater. 18, 1–21 (2023). https:// doi.org/10.1016/j.cscm.2023.e02112 Yuanliang, X.; Zhongshuai, H.; Chao, L.; Chao, Z.; Yamei, Z.: Unveiling the role of Portland cement and fly ash in pore formation and its influence on properties of hybrid alkali-activated foamed concrete. Constr. Build. Mater. 411, 1–10 (2024). https://doi.org/ 10.1016/j.conbuildmat.2023.134336 Yang, Y.; Yao, J.; Liu, J.; Kong, D.; Gu, C.; Wang, L.: Evaluation of the thermal and shrinkage stresses in restrained concrete: new method of investigation. Constr. Build. Mater. 411, 1–14 (2024). https://doi.org/10.1016/j.conbuildmat.2023.134493 Amin, M.N.; Khan, K.; Javed, M.F.; Aslam, F.; Qadir, M.G.; Faraz, M.I.: Prediction of mechanical properties of fly-ash/slag-based geopolymer concrete using ensemble and non-ensemble machinelearning techniques. Materials 15, 1–20 (2022). https://doi.org/10. 3390/ma15103478 Cao, R.; Fang, Z.; Jin, M.; Shang, Y.: Application of machine learning approaches to predict the strength property of geopolymer concrete. Materials 15, 1–15 (2022). https://doi.org/10.3390/ ma15072400 Huynh, A.T.; Nguyen, Q.D.; Xuan, Q.L.; Magee, B.; Chung, T.; Tran, K.T.; Nguyen, K.T.: A machine learning-assisted numerical predictor for compressive strength of geopolymer concrete based on experimental data and sensitivity analysis. Appl. Sci. 10, 1–16 (2020). https://doi.org/10.3390/app10217726 Nithurshan, M.; Elakneswaran, Y.: A systematic review and assessment of concrete strength prediction models. Case Stud. Constr. Mater. 18, 1–15 (2023). https://doi.org/10.1016/j.cscm.2023.e0 1830 Moein, M.M.; Saradar, A.; Rahmati, K.; Ghasemzadeh Mousavinejad, S.H.; Bristow, J.; Aramali, V.; Karakouzian, M.: Predictive models for concrete properties using machine learning and deep learning approaches: a review. J. Build. Eng. 63, 1–41 (2023). https://doi.org/10.1016/j.jobe.2022.105444 Ahmed, H.U.; Mohammed, A.S.; Qaidi, S.M.A.; Faraj, R.H.; Hamah Sor, N.; Mohammed, A.A.: Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling. Eur. J. Environ. Civ. Eng. 27, 1383–1428 (2023). https://doi.org/10.1080/19648189.2022.20 83022 Mansouri, E.; Manfredi, M.; Hu, J.-W.: Environmentally friendly concrete compressive strength prediction using hybrid machine learning. Sustainability 14, 1–17 (2022). https://doi.org/10.3390/ su142012990 Marks, M.; Glinicki, M.A.; Gibas, K.: Prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning. Materials 8, 8714–8727 (2015). https://doi.org/ 10.3390/ma8125483 Najm, H.M.; Nanayakkara, O.; Ahmad, M.; Sabri Sabri, M.M.: Mechanical properties, crack width, and propagation of waste ceramic concrete subjected to elevated temperatures: a comprehensive study. Materials 15, 1–32 (2022). https://doi.org/10.3390/ ma15072371 Tang, Y.X.; Lee, Y.H.; Amran, M.; Fediuk, R.; Vatin, N.; Kueh, A.B.H.; Lee, Y.Y.: Artificial neural network-forecasted compression strength of alkaline-activated slag concretes. Sustainability 14, 1–20 (2022). https://doi.org/10.3390/su14095214 Shafigh, P.; Asadi, I.; Mahyuddin, N.B.: Concrete as a thermal mass material for building applications—A review. J. Build. Eng. 19, 14–25 (2018). https://doi.org/10.1016/j.jobe.2018.04.021 Rocha Segundo, I.; Silva, L.; Palha, C.; Freitas, E.; Silva, H.: Surface rehabilitation of Portland cement concrete (PCC) pavements using single or double surface dressings with soft bitumen, conventional or modified emulsions. Constr. Build. Mater. 281, 1–15 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122611 Aquino Rocha, J.H.; Toledo Filho, R.D.: Microstructure, hydration process, and compressive strength assessment of ternary mixtures containing Portland cement, recycled concrete powder, and metakaolin. J. Clean. Prod. 434, 1–24 (2024). https://doi.org/10. 1016/j.jclepro.2023.140085 Zou, Y.; Zheng, C.; Alzahrani, A.M.; Ahmad, W.; Ahmad, A.; Mohamed, A.M.; Khallaf, R.; Elattar, S.: Evaluation of artificial intelligence methods to estimate the compressive strength of geopolymers. Gels 8, 1–23 (2022). https://doi.org/10.3390/gels80 50271 Shah, H.A.; Yuan, Q.; Akmal, U.; Shah, S.A.; Salmi, A.; Awad, Y.A.; Shah, L.A.; Iftikhar, Y.; Javed, M.H.; Khan, M.I.: Application of machine learning techniques for predicting compressive, splitting tensile, and flexural strengths of concrete with metakaolin. Materials 15, 1–36 (2022). https://doi.org/10.3390/ma15155435 Silva, V.P.; Carvalho, R.D.; Rêgo, J.H.; Evangelista, F., Jr.: Machine learning-based prediction of the compressive strength of Brazilian concretes: a dual-dataset study. Materials 16, 1–16 (2023). https:// doi.org/10.3390/ma16144977 FHWA. Long-Term Pavement Performance Information Management System User Guide. Fed. Highw. Adm. FHWA-HRT-2, 1–208 (2021) Karlaftis, A.G.; Badr, A.: Predicting asphalt pavement crack initiation following rehabilitation treatments. Transp. Res. Part C Emerg. Technol. 55, 510–517 (2015). https://doi.org/10.1016/j.trc.2015.03 .031 Jia, Y.; Wang, S.; Huang, A.; Gao, Y.; Wang, J.; Zhou, W.: A comparative long-term effectiveness assessment of preventive maintenance treatments under various environmental conditions. Constr. Build. Mater. 273, 1–10 (2021). https://doi.org/10.1016/j. conbuildmat.2020.121717 Yu, Y.; Sun, L.: Effect of overlay thickness, overlay material, and pre-overlay treatment on evolution of asphalt concrete overlay roughness in LTPP SPS-5 experiment: a multilevel model approach. Constr. Build. Mater. 162, 192–201 (2018). https://doi. org/10.1016/j.conbuildmat.2017.12.039 Sollazzo, G.; Fwa, T.F.; Bosurgi, G.: An ANN model to correlate roughness and structural performance in asphalt pavements. Constr. Build. Mater. 134, 684–693 (2017). https://doi.org/10.1016/j.conb uildmat.2016.12.186 Gong, H.; Sun, Y.; Shu, X.; Huang, B.: Use of random forests regression for predicting IRI of asphalt pavements. Constr. Build. Mater. 189, 890–897 (2018). https://doi.org/10.1016/j.conbuild mat.2018.09.017 Gong, H.; Huang, B.; Shu, X.: Field performance evaluation of asphalt mixtures containing high percentage of RAP using LTPP data. Constr. Build. Mater. 176, 118–128 (2018). https://doi.org/ 10.1016/j.conbuildmat.2018.05.007 Chen, X.; Dong, Q.; Zhu, H.; Huang, B.: Development of distress condition index of asphalt pavements using LTPP data through structural equation modeling. Transp. Res. Part C Emerg. Technol. 68, 58–69 (2016). https://doi.org/10.1016/j.trc.2016.03.011 Gong, H.; Sun, Y.; Hu, W.; Polaczyk, P.A.; Huang, B.: Investigating impacts of asphalt mixture properties on pavement performance using LTPP data through random forests. Constr. Build. Mater. 204, 203–212 (2019). https://doi.org/10.1016/j.conbuildmat.2019. 01.198 Rashidian-Dezfouli, H.; Rangaraju, P.R.: Evaluation of selected durability properties of portland cement concretes containing ground glass fiber as a pozzolan. Transp. Res. Rec. 2672, 88–98 (2018). https://doi.org/10.1177/0361198118773198 Ogbodo, M.C.; Akpabot, A.I.: An assessment of some physical properties of different brands of cement in Nigeria. In: IOP Conference Series: Materials Science and Engineering, vol. 1048, pp. 1–5 (2021). https://doi.org/10.1088/1757-899X/1048/1/012013 Zemri, C.; Bachir Bouiadjra, M.: Comparison between physical–mechanical properties of mortar made with Portland cement (CEMI) and slag cement (CEMIII) subjected to elevated temperature. Case Stud. Constr. Mater. 12, 1–12 (2020). https://doi.org/10. 1016/j.cscm.2020.e00339 Latifoglu, L.; Ozger, M.: A novel approach for high-performance estimation of SPI data in drought prediction. Sustainability 15, 1–29 (2023). https://doi.org/10.3390/su151914046 Anysz, H.; Zbiciak, A.; Ibadov, N.: The influence of input data standardization method on prediction accuracy of artificial neural networks. Procedia Eng. 153, 66–70 (2016). https://doi.org/10. 1016/j.proeng.2016.08.081 Deo, R.C.; ¸Sahin, M.: Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia. Atmos. Res. 161–162, 65–81 (2015). https://doi.org/10.1016/j.atmosres.2015.03.018 Chollet Ramampiandra, E.; Scheidegger, A.;Wydler, J.; Schuwirth, N.: A comparison of machine learning and statistical species distribution models: quantifying overfitting supports model interpretation. Ecol. Model. 481, 1–11 (2023). https://doi.org/10.1016/ j.ecolmodel.2023.110353 Ookura, S.; Mori, H.: An efficient method for wind power generation forecasting by LSTM in consideration of overfitting prevention. IFAC Pap. 53, 12169–12174 (2020). https://doi.org/10.1016/ j.ifacol.2020.12.1008 Piotrowski, A.P.; Napiorkowski, J.J.: A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. J. Hydrol. 476, 97–111 (2013). https://doi. org/10.1016/j.jhydrol.2012.10.019 Bahtiyar, H.; Soydaner, D.; Yüksel, E.: Application of multilayer perceptron with data augmentation in nuclear physics. Appl. Soft Comput. 128, 1–9 (2022). https://doi.org/10.1016/j.asoc.2022.10 9470 Min, R.; Wang, Z.; Zhuang, Y.; Yi, X.: Application of semisupervised convolutional neural network regression model based on data augmentation and process spectral labeling in Raman predictive modeling of cell culture processes. Biochem. Eng. J. 191, 1–9 (2023). https://doi.org/10.1016/j.bej.2022.108774 Hao, R.; Zheng, H.; Yang, X.: Data augmentation based estimation for the censored composite quantile regression neural network model. Appl. Soft Comput. 127, 1–11 (2022). https://doi.org/10. 1016/j.asoc.2022.109381 Demir, S.; Mincev, K.; Kok, K.; Paterakis, N.G.: Data augmentation for time series regression: applying transformations, autoencoders and adversarial networks to electricity price forecasting. Appl. Energy 304, 1–19 (2021). https://doi.org/10.1016/j.apenergy.2021. 117695 Hao, R.; Weng, C.; Liu, X.; Yang, X.: Data augmentation based estimation for the censored quantile regression neural network model. Expert Syst. Appl. 214, 1–15 (2023). https://doi.org/10. 1016/j.eswa.2022.119097 Shorten, C.; Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019). https://doi.org/ 10.1186/s40537-019-0197-0 Berrett, C.; Calder, C.A.: Data augmentation strategies for the Bayesian spatial probit regression model. Comput. Stat. Data Anal. 56, 478–490 (2012). https://doi.org/10.1016/j.csda.2011.08.020 Mazzoleni, M.; Breschi, V.; Formentin, S.: Piecewise nonlinear regression with data augmentation. IFAC Pap. 54, 421–426 (2021). https://doi.org/10.1016/j.ifacol.2021.08.396 Polo-Mendoza, R.; Martinez-Arguelles, G.; Peñabaena-Niebles, R.; Covilla-Valera, E.: Neural networks implementation for the environmental optimisation of the recycled concrete aggregate inclusion in warm mix asphalt. Road Mater. Pavement Des. (2023). https://doi.org/10.1080/14680629.2023.2230298 Himmeto ˘glu, S.; Delice, Y.; Aydo ˘gan, E.K.; Uzal, B.: Green building envelope designs in different climate and seismic zones: multi-objective ANN-based genetic algorithm. Sustain. Energy Technol. Assess. 53, 1–17 (2022). https://doi.org/10.1016/j.seta. 2022.102505 Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N.: Explainable artificial intelligence: a comprehensive review. Artif. Intell. Rev. 55, 3503–3568 (2022). https://doi.org/10.1007/s10462-021-10088-y Polo-Mendoza, R.; Martinez-Arguelles, G.; Peñabaena-Niebles, R.: A multi-objective optimization based on genetic algorithms for the sustainable design of Warm Mix Asphalt (WMA). Int. J. Pavement Eng. 24, 2074417 (2023). https://doi.org/10.1080/1029 8436.2022.2074417 Białek, J.; Bujalski, W.; Wojdan, K.; Guzek, M.; Kurek, T.: Dataset level explanation of heat demand forecasting ANN with SHAP. Energy 261, 1–12 (2022). https://doi.org/10.1016/j.energy.2022.12 5075 Polo-Mendoza, R.; Duque, J.; Mašín, D.; Turbay, E.; Acosta, C.: Implementation of deep neural networks and statistical methods to predict the resilient modulus of soils. Int. J. Pavement Eng. 24, 2257852 (2023). https://doi.org/10.1080/10298436.2023.2257852 Hamim, A.; Yusoff, N.I.M.; Omar, H.A.; Jamaludin, N.A.A.; Hassan, N.A.; El-Shafie, A.; Ceylan, H.: Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data. Constr. Build. Mater. 257, 1–14 (2020). https://doi.org/10.1016/j. conbuildmat.2020.119549 Polo-Mendoza, R.; Martinez-Arguelles, G.; Peñabaena-Niebles, R.: Environmental optimization of warm mix asphalt (WMA) design with recycled concrete aggregates (RCA) inclusion through artificial intelligence (AI) techniques. Res. Eng. 17, 1–15 (2023). https://doi.org/10.1016/j.rineng.2023.100984 Zdravkovi´c, S.; Kavitha, L.; Satari´c, M.V.; Zekovi´c, S.; Petrovi´c, J.: Modified extended tanh-function method and nonlinear dynamics of microtubules. Chaos Solitons Fractals 45, 1378–1386 (2012). https://doi.org/10.1016/j.chaos.2012.07.009 Wuraola, A.; Patel, N.: Resource efficient activation functions for neural network accelerators. Neurocomputing 482, 163–185 (2022) Liu, K.; Shi,W.; Huang, C.; Zeng, D.: Cost effective Tanh activation function circuits based on fast piecewise linear logic. Microelectron. J. 138, 1–9 (2023). https://doi.org/10.1016/j.mejo.2023.10 5821 Kingma, D.P.; Ba, J.L.: Amax: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR), pp. 1–15 (2015) Pandi Chandran, P.; Hema Rajini, N.; Jeyakarthic, M.: Optimal deep belief network enabled malware detection and classification model. Intell. Autom. Soft Comput. (2023). https://doi.org/10.32 604/iasc.2023.029946 Obayya, M.; Maashi, M.S.; Nemri, N.; Mohsen, H.; Motwakel, A.; Osman, A.E.; Alneil, A.A.; Alsaid, M.I.: Hyperparameter optimizer with deep learning-based decision-support systems for histopathological breast cancer diagnosis. Cancers 15, 1–19 (2023). https://doi.org/10.3390/cancers15030885 Sadykov, M.; Haines, S.; Broadmeadow, M.; Walker, G.; Holmes, D.W.: Practical evaluation of lithium-ion battery state-of-charge estimation using time-series machine learning for electric vehicles. Energies 16, 1–34 (2023). https://doi.org/10.3390/en16041628 Zhang, S.; Lei, H.; Zhou, Z.; Wang, G.; Qiu, B.: Fatigue life analysis of high-strength bolts based on machine learning method and SHapley Additive exPlanations (SHAP) approach. Structures 51, 275–287 (2023). https://doi.org/10.1016/j.istruc.2023.03.060 Nicolson, A.; Paliwal, K.K.: Deep learning for minimum meansquare error approaches to speech enhancement. Speech Commun. 111, 44–55 (2019). https://doi.org/10.1016/j.specom.2019.06.002 Koya, B.P.; Aneja, S.; Gupta, R.; Valeo, C.: Comparative analysis of different machine learning algorithms to predict mechanical properties of concrete. Mech. Adv. Mater. Struct. 29, 4032–4043 (2022). https://doi.org/10.1080/15376494.2021.1917021 Vilares Ferro, M.; Doval Mosquera, Y.; Ribadas Pena, F.J.; Darriba Bilbao, V.M.: Early stopping by correlating online indicators in neural networks. Neural Netw. 159, 109–124 (2023). https://doi. org/10.1016/j.neunet.2022.11.035 Zeng, J.; Zhang, M.; Lin, S.-B.: Fully corrective gradient boosting with squared hinge: fast learning rates and early stopping. Neural Netw. 147, 136–151 (2022). https://doi.org/10.1016/j.neunet.2021. 12.016 Singh, V.; Pencina, M.; Einstein, A.J.; Liang, J.X.; Berman, D.S.; Slomka, P.: Impact of train/test sample regimen on performance estimate stability of machine learning in cardiovascular imaging. Sci. Rep. 11, 1–8 (2021). https://doi.org/10.1038/s41598-021-93 651-5 Xu, Y.; Goodacre, R.: On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2, 249–262 (2018). https://doi.org/10. 1007/s41664-018-0068-2 Quinn, T.P.; Le, V.; Cardilini, A.P.A.: Test set verification is an essential step in model building. Methods Ecol. Evol. 12, 127–129 (2021). https://doi.org/10.1111/2041-210X.13495 Straub, J.: Machine learning performance validation and training using a ‘perfect’ expert system. MethodsX 8, 1–6 (2021). https:// doi.org/10.1016/j.mex.2021.101477 Polo-Mendoza, R.; Duque, J.; Mašín, D.: Prediction of California bearing ratio and modified proctor parameters using deep neural networks and multiple linear regression: a case study of granular soils. Case Stud. Constr. Mater. 20, 1–17 (2024). https://doi.org/ 10.1016/j.cscm.2023.e02800 Li, Z.: Extracting spatial effects from machine learning model using local interpretation method: an example of SHAP and XGBoost. Comput. Environ. Urban Syst. 96, 1–18 (2022). https://doi.org/10. 1016/j.compenvurbsys.2022.101845 Kim, Y.; Kim, Y.: Explainable heat-related mortality with random forest and SHapley Additive exPlanations (SHAP) models. Sustain. Cities Soc. 79, 1–15 (2022). https://doi.org/10.1016/j.scs.2022.10 3677 Lin, K.; Gao, Y.: Model interpretability of financial fraud detection by group SHAP. Expert Syst. Appl. 210, 1–9 (2022). https://doi. org/10.1016/j.eswa.2022.118354 Kashifi, M.T.: Investigating two-wheelers risk factors for severe crashes using an interpretable machine learning approach and SHAP analysis. IATSS Res. 47, 357–371 (2023). https://doi.org/ 10.1016/j.iatssr.2023.07.005 Meng, Y.; Yang, N.; Qian, Z.; Zhang, G.: What makes an online review more helpful: an interpretation framework using XGBoost and SHAP values. J. Theor. Appl. Electron. Commer. Res. 16, 466–490 (2021). https://doi.org/10.3390/jtaer16030029 Scavuzzo, C.M.; Scavuzzo, J.M.; Campero, M.N.; Anegagrie, M.; Aramendia, A.A.; Benito, A.; Periago, V.: Feature importance: opening a soil-transmitted helminth machine learning model via SHAP. Infect. Dis. Model. 7, 262–276 (2022). https://doi.org/10. 1016/j.idm.2022.01.004 Tang, Y.; Wang, C.: Performance modeling on DaVinci AI core. J. Parallel Distrib. Comput. 175, 134–149 (2023). https://doi.org/10. 1016/j.jpdc.2023.01.008 Dube, P.; Suk, T.; Wang, C.: AI gauge: runtime estimation for deep learning in the cloud. In: 31st International Symposium on Computer Architecture and High Performance Computing (SBACPAD), pp. 160–167 (2019) Aghapour, Z.; Sharifian, S.; Taheri, H.: Task offloading and resource allocation algorithm based on deep reinforcement learning for distributed AI execution tasks in IoT edge computing environments. Comput. Netw. 223, 1–17 (2023). https://doi.org/10.1016/ j.comnet.2023.109577 Assaf, A.M.; Haron, H.; Hamed, H.N.A.H.; Ghaleb, F.A.; Dalam, M.E.; Eisa, T.A.E.: Improving solar radiation forecasting utilizing data augmentation model generative adversarial networks with convolutional support vector machine (GAN-CSVR). Appl. Sci. 13, 1–23 (2023). https://doi.org/10.3390/app132312768 Harrou, F.; Dairi, A.; Dorbane, A.; Sun, Y.: Energy consumption prediction in water treatment plants using deep learning with data augmentation. Res. Eng. 20, 1–14 (2023). https://doi.org/10.1016/ j.rineng.2023.101428 Liu, K.-H.; Xie, T.-Y.; Cai, Z.-K.; Chen, G.-M.; Zhao, X.-Y.: Datadriven prediction and optimization of axial compressive strength for FRP-reinforced CFST columns using synthetic data augmentation. Eng. Struct. 300, 1–16 (2024). https://doi.org/10.1016/j.engs truct.2023.117225 Mumuni, A.; Mumuni, F.: Data augmentation: a comprehensive survey of modern approaches. Array 16, 1–27 (2022). https://doi. org/10.1016/j.array.2022.100258 Maharana, K.; Mondal, S.; Nemade, B.: A review: data preprocessing and data augmentation techniques. Glob. Transitions Proc. 3, 91–99 (2022). https://doi.org/10.1016/j.gltp.2022.04.020 Walubita, L.F.; Martinez-Arguelles, G.; Polo-Mendoza, R.; IckLee, S.; Fuentes, L.: Comparative environmental assessment of rigid, flexible, and perpetual pavement: a case study of Texas. Sustainability 14, 1–22 (2022). https://doi.org/10.3390/su14169983 Gupta, S.; Chaudhary, S.: State of the art review on supplementary cementitious materials in India—II: characteristics of SCMs, effect on concrete and environmental impact. J. Clean. Prod. 357, 1–19 (2022). https://doi.org/10.1016/j.jclepro.2022.131945 Sharma, R.K.; Singh, D.; Dasaka, S.M.: Investigating supplementary cementitious materials’ effects on stabilized aggregate performance, behaviour, and design aspects. Constr. Build. Mater. 411, 1–16 (2024). https://doi.org/10.1016/j.conbuildmat.2023.13 4564 |
dc.relation.citationendpage.none.fl_str_mv |
14365 |
dc.relation.citationstartpage.none.fl_str_mv |
14351 |
dc.relation.citationissue.none.fl_str_mv |
10 |
dc.relation.citationvolume.none.fl_str_mv |
49 |
dc.rights.none.fl_str_mv |
© The Author(s) 2024. |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © The Author(s) 2024. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
15 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer nature |
dc.publisher.place.none.fl_str_mv |
Germany |
publisher.none.fl_str_mv |
Springer nature |
dc.source.none.fl_str_mv |
https://link.springer.com/article/10.1007/s13369-024-08794-0 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/640afd64-f03c-4432-8110-0b128dee2e56/download https://repositorio.cuc.edu.co/bitstreams/8cf055cf-ed8d-4c7b-8f2c-67b2c2294da4/download https://repositorio.cuc.edu.co/bitstreams/9d705359-a8b8-47cf-941c-34b11dd4c562/download https://repositorio.cuc.edu.co/bitstreams/7fab4be2-3787-4eed-8146-d6507fe868ea/download |
bitstream.checksum.fl_str_mv |
79594e959ef1498796741ba97faf792a 73a5432e0b76442b22b026844140d683 bcd06dbcaa28451dcd13a9358418e60e b32a28d234a79b8dbeaeb806a370cf9b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166548441792512 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© The Author(s) 2024.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Polo Mendoza, RodrigoMartínez Arguelles, GilbertoPeñabaena Niebles, RitaDuque, Jose2024-11-25T18:03:51Z2024-11-25T18:03:51Z2024-05-03Polo-Mendoza, R., Martinez-Arguelles, G., Peñabaena-Niebles, R. et al. Development of a Machine Learning (ML)-Based Computational Model to Estimate the Engineering Properties of Portland Cement Concrete (PCC). Arab J Sci Eng 49, 14351–14365 (2024). https://doi.org/10.1007/s13369-024-08794-02193-567Xhttps://hdl.handle.net/11323/1382710.1007/s13369-024-08794-02191-4281Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Portland cement concrete (PCC) is the construction material most used worldwide. Hence, its proper characterization is fundamental for the daily-basis engineering practice. Nonetheless, the experimental measurements of the PCC’s engineering properties (i.e., Poisson’s Ratio -v-, Elastic Modulus -E-, Compressive Strength -ComS-, and Tensile Strength -TenS-) consume considerable amounts of time and financial resources. Therefore, the development of high-precision indirect methods is fundamental. Accordingly, this research proposes a computational model based on deep neural networks (DNNs) to simultaneously predict the v, E, ComS, and TenS. For this purpose, the Long-Term Pavement Performance database was employed as the data source. In this regard, the mix design parameters of the PCC are adopted as input variables. The performance of the DNN model was evaluated with 1:1 lines, goodness-of-fit parameters, Shapley additive explanations assessments, and running time analysis. The results demonstrated that the proposed DNN model exhibited an exactitude higher than 99.8%, with forecasting errors close to zero (0). Consequently, the machine learning-based computational model designed in this investigation is a helpful tool for estimating the PCC’s engineering properties when laboratory tests are not attainable. Thus, the main novelty of this study is creating a robust model to determine the v, E, ComS, and TenS by solely considering the mix design parameters. Likewise, the central contribution to the state-of-the-art achieved by the present research effort is the public launch of the developed computational tool through an open-access GitHub repository, which can be utilized by engineers, designers, agencies, and other stakeholders.15 páginasapplication/pdfengSpringer natureGermanyhttps://link.springer.com/article/10.1007/s13369-024-08794-0Development of a Machine Learning (ML)-based computational model to estimate the engineering properties of Portland Cement Concrete (PCC)Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Arabian journal for science and engineeringLiu, Y.; Du, P.; Tan, K.H.; Du, Y.; Su, J.; Shi, C.: Experimental and analytical studies on residual flexural behaviour of reinforced alkali-activated slag-based concrete beams after exposure to fire. Eng. Struct. 298, 1–14 (2024). https://doi.org/10.1016/j.engstruct. 2023.117035Singh, A.; Bhadauria, S.S.; Thakare, A.A.; Kumar, A.; Mudgal, M.; Chaudhary, S.: Durability assessment of mechanochemically activated geopolymer concrete with a low molarity alkali solution. Case Stud. Constr. Mater. 20, 1–19 (2024). https://doi.org/10.1016/ j.cscm.2023.e02715Singh, P.R.; Vanapalli, K.R.; Jadda, K.: Durability assessment of fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates against acid and sulfate attack. J. Build. Eng. 82, 1–17 (2024). https://doi.org/10.1016/j.jobe.2023.108354Polo-Mendoza, R.; Mora, O.; Duque, J.; Turbay, E.; MartinezArguelles, G.; Fuentes, L.; Guerrero, O.; Perez, S.: Environmental and economic feasibility of implementing perpetual pavements (PPs) against conventional pavements: a case study of Barranquilla city, Colombia. Case Stud. Constr. Mater. 18, 1–21 (2023). https:// doi.org/10.1016/j.cscm.2023.e02112Yuanliang, X.; Zhongshuai, H.; Chao, L.; Chao, Z.; Yamei, Z.: Unveiling the role of Portland cement and fly ash in pore formation and its influence on properties of hybrid alkali-activated foamed concrete. Constr. Build. Mater. 411, 1–10 (2024). https://doi.org/ 10.1016/j.conbuildmat.2023.134336Yang, Y.; Yao, J.; Liu, J.; Kong, D.; Gu, C.; Wang, L.: Evaluation of the thermal and shrinkage stresses in restrained concrete: new method of investigation. Constr. Build. Mater. 411, 1–14 (2024). https://doi.org/10.1016/j.conbuildmat.2023.134493Amin, M.N.; Khan, K.; Javed, M.F.; Aslam, F.; Qadir, M.G.; Faraz, M.I.: Prediction of mechanical properties of fly-ash/slag-based geopolymer concrete using ensemble and non-ensemble machinelearning techniques. Materials 15, 1–20 (2022). https://doi.org/10. 3390/ma15103478Cao, R.; Fang, Z.; Jin, M.; Shang, Y.: Application of machine learning approaches to predict the strength property of geopolymer concrete. Materials 15, 1–15 (2022). https://doi.org/10.3390/ ma15072400Huynh, A.T.; Nguyen, Q.D.; Xuan, Q.L.; Magee, B.; Chung, T.; Tran, K.T.; Nguyen, K.T.: A machine learning-assisted numerical predictor for compressive strength of geopolymer concrete based on experimental data and sensitivity analysis. Appl. Sci. 10, 1–16 (2020). https://doi.org/10.3390/app10217726Nithurshan, M.; Elakneswaran, Y.: A systematic review and assessment of concrete strength prediction models. Case Stud. Constr. Mater. 18, 1–15 (2023). https://doi.org/10.1016/j.cscm.2023.e0 1830Moein, M.M.; Saradar, A.; Rahmati, K.; Ghasemzadeh Mousavinejad, S.H.; Bristow, J.; Aramali, V.; Karakouzian, M.: Predictive models for concrete properties using machine learning and deep learning approaches: a review. J. Build. Eng. 63, 1–41 (2023). https://doi.org/10.1016/j.jobe.2022.105444Ahmed, H.U.; Mohammed, A.S.; Qaidi, S.M.A.; Faraj, R.H.; Hamah Sor, N.; Mohammed, A.A.: Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling. Eur. J. Environ. Civ. Eng. 27, 1383–1428 (2023). https://doi.org/10.1080/19648189.2022.20 83022Mansouri, E.; Manfredi, M.; Hu, J.-W.: Environmentally friendly concrete compressive strength prediction using hybrid machine learning. Sustainability 14, 1–17 (2022). https://doi.org/10.3390/ su142012990Marks, M.; Glinicki, M.A.; Gibas, K.: Prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning. Materials 8, 8714–8727 (2015). https://doi.org/ 10.3390/ma8125483Najm, H.M.; Nanayakkara, O.; Ahmad, M.; Sabri Sabri, M.M.: Mechanical properties, crack width, and propagation of waste ceramic concrete subjected to elevated temperatures: a comprehensive study. Materials 15, 1–32 (2022). https://doi.org/10.3390/ ma15072371Tang, Y.X.; Lee, Y.H.; Amran, M.; Fediuk, R.; Vatin, N.; Kueh, A.B.H.; Lee, Y.Y.: Artificial neural network-forecasted compression strength of alkaline-activated slag concretes. Sustainability 14, 1–20 (2022). https://doi.org/10.3390/su14095214Shafigh, P.; Asadi, I.; Mahyuddin, N.B.: Concrete as a thermal mass material for building applications—A review. J. Build. Eng. 19, 14–25 (2018). https://doi.org/10.1016/j.jobe.2018.04.021Rocha Segundo, I.; Silva, L.; Palha, C.; Freitas, E.; Silva, H.: Surface rehabilitation of Portland cement concrete (PCC) pavements using single or double surface dressings with soft bitumen, conventional or modified emulsions. Constr. Build. Mater. 281, 1–15 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122611Aquino Rocha, J.H.; Toledo Filho, R.D.: Microstructure, hydration process, and compressive strength assessment of ternary mixtures containing Portland cement, recycled concrete powder, and metakaolin. J. Clean. Prod. 434, 1–24 (2024). https://doi.org/10. 1016/j.jclepro.2023.140085Zou, Y.; Zheng, C.; Alzahrani, A.M.; Ahmad, W.; Ahmad, A.; Mohamed, A.M.; Khallaf, R.; Elattar, S.: Evaluation of artificial intelligence methods to estimate the compressive strength of geopolymers. Gels 8, 1–23 (2022). https://doi.org/10.3390/gels80 50271Shah, H.A.; Yuan, Q.; Akmal, U.; Shah, S.A.; Salmi, A.; Awad, Y.A.; Shah, L.A.; Iftikhar, Y.; Javed, M.H.; Khan, M.I.: Application of machine learning techniques for predicting compressive, splitting tensile, and flexural strengths of concrete with metakaolin. Materials 15, 1–36 (2022). https://doi.org/10.3390/ma15155435Silva, V.P.; Carvalho, R.D.; Rêgo, J.H.; Evangelista, F., Jr.: Machine learning-based prediction of the compressive strength of Brazilian concretes: a dual-dataset study. Materials 16, 1–16 (2023). https:// doi.org/10.3390/ma16144977FHWA. Long-Term Pavement Performance Information Management System User Guide. Fed. Highw. Adm. FHWA-HRT-2, 1–208 (2021)Karlaftis, A.G.; Badr, A.: Predicting asphalt pavement crack initiation following rehabilitation treatments. Transp. Res. Part C Emerg. Technol. 55, 510–517 (2015). https://doi.org/10.1016/j.trc.2015.03 .031Jia, Y.; Wang, S.; Huang, A.; Gao, Y.; Wang, J.; Zhou, W.: A comparative long-term effectiveness assessment of preventive maintenance treatments under various environmental conditions. Constr. Build. Mater. 273, 1–10 (2021). https://doi.org/10.1016/j. conbuildmat.2020.121717Yu, Y.; Sun, L.: Effect of overlay thickness, overlay material, and pre-overlay treatment on evolution of asphalt concrete overlay roughness in LTPP SPS-5 experiment: a multilevel model approach. Constr. Build. Mater. 162, 192–201 (2018). https://doi. org/10.1016/j.conbuildmat.2017.12.039Sollazzo, G.; Fwa, T.F.; Bosurgi, G.: An ANN model to correlate roughness and structural performance in asphalt pavements. Constr. Build. Mater. 134, 684–693 (2017). https://doi.org/10.1016/j.conb uildmat.2016.12.186Gong, H.; Sun, Y.; Shu, X.; Huang, B.: Use of random forests regression for predicting IRI of asphalt pavements. Constr. Build. Mater. 189, 890–897 (2018). https://doi.org/10.1016/j.conbuild mat.2018.09.017Gong, H.; Huang, B.; Shu, X.: Field performance evaluation of asphalt mixtures containing high percentage of RAP using LTPP data. Constr. Build. Mater. 176, 118–128 (2018). https://doi.org/ 10.1016/j.conbuildmat.2018.05.007Chen, X.; Dong, Q.; Zhu, H.; Huang, B.: Development of distress condition index of asphalt pavements using LTPP data through structural equation modeling. Transp. Res. Part C Emerg. Technol. 68, 58–69 (2016). https://doi.org/10.1016/j.trc.2016.03.011Gong, H.; Sun, Y.; Hu, W.; Polaczyk, P.A.; Huang, B.: Investigating impacts of asphalt mixture properties on pavement performance using LTPP data through random forests. Constr. Build. Mater. 204, 203–212 (2019). https://doi.org/10.1016/j.conbuildmat.2019. 01.198Rashidian-Dezfouli, H.; Rangaraju, P.R.: Evaluation of selected durability properties of portland cement concretes containing ground glass fiber as a pozzolan. Transp. Res. Rec. 2672, 88–98 (2018). https://doi.org/10.1177/0361198118773198Ogbodo, M.C.; Akpabot, A.I.: An assessment of some physical properties of different brands of cement in Nigeria. In: IOP Conference Series: Materials Science and Engineering, vol. 1048, pp. 1–5 (2021). https://doi.org/10.1088/1757-899X/1048/1/012013Zemri, C.; Bachir Bouiadjra, M.: Comparison between physical–mechanical properties of mortar made with Portland cement (CEMI) and slag cement (CEMIII) subjected to elevated temperature. Case Stud. Constr. Mater. 12, 1–12 (2020). https://doi.org/10. 1016/j.cscm.2020.e00339Latifoglu, L.; Ozger, M.: A novel approach for high-performance estimation of SPI data in drought prediction. Sustainability 15, 1–29 (2023). https://doi.org/10.3390/su151914046Anysz, H.; Zbiciak, A.; Ibadov, N.: The influence of input data standardization method on prediction accuracy of artificial neural networks. Procedia Eng. 153, 66–70 (2016). https://doi.org/10. 1016/j.proeng.2016.08.081Deo, R.C.; ¸Sahin, M.: Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia. Atmos. Res. 161–162, 65–81 (2015). https://doi.org/10.1016/j.atmosres.2015.03.018Chollet Ramampiandra, E.; Scheidegger, A.;Wydler, J.; Schuwirth, N.: A comparison of machine learning and statistical species distribution models: quantifying overfitting supports model interpretation. Ecol. Model. 481, 1–11 (2023). https://doi.org/10.1016/ j.ecolmodel.2023.110353Ookura, S.; Mori, H.: An efficient method for wind power generation forecasting by LSTM in consideration of overfitting prevention. IFAC Pap. 53, 12169–12174 (2020). https://doi.org/10.1016/ j.ifacol.2020.12.1008Piotrowski, A.P.; Napiorkowski, J.J.: A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. J. Hydrol. 476, 97–111 (2013). https://doi. org/10.1016/j.jhydrol.2012.10.019Bahtiyar, H.; Soydaner, D.; Yüksel, E.: Application of multilayer perceptron with data augmentation in nuclear physics. Appl. Soft Comput. 128, 1–9 (2022). https://doi.org/10.1016/j.asoc.2022.10 9470Min, R.; Wang, Z.; Zhuang, Y.; Yi, X.: Application of semisupervised convolutional neural network regression model based on data augmentation and process spectral labeling in Raman predictive modeling of cell culture processes. Biochem. Eng. J. 191, 1–9 (2023). https://doi.org/10.1016/j.bej.2022.108774Hao, R.; Zheng, H.; Yang, X.: Data augmentation based estimation for the censored composite quantile regression neural network model. Appl. Soft Comput. 127, 1–11 (2022). https://doi.org/10. 1016/j.asoc.2022.109381Demir, S.; Mincev, K.; Kok, K.; Paterakis, N.G.: Data augmentation for time series regression: applying transformations, autoencoders and adversarial networks to electricity price forecasting. Appl. Energy 304, 1–19 (2021). https://doi.org/10.1016/j.apenergy.2021. 117695Hao, R.; Weng, C.; Liu, X.; Yang, X.: Data augmentation based estimation for the censored quantile regression neural network model. Expert Syst. Appl. 214, 1–15 (2023). https://doi.org/10. 1016/j.eswa.2022.119097Shorten, C.; Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019). https://doi.org/ 10.1186/s40537-019-0197-0Berrett, C.; Calder, C.A.: Data augmentation strategies for the Bayesian spatial probit regression model. Comput. Stat. Data Anal. 56, 478–490 (2012). https://doi.org/10.1016/j.csda.2011.08.020Mazzoleni, M.; Breschi, V.; Formentin, S.: Piecewise nonlinear regression with data augmentation. IFAC Pap. 54, 421–426 (2021). https://doi.org/10.1016/j.ifacol.2021.08.396Polo-Mendoza, R.; Martinez-Arguelles, G.; Peñabaena-Niebles, R.; Covilla-Valera, E.: Neural networks implementation for the environmental optimisation of the recycled concrete aggregate inclusion in warm mix asphalt. Road Mater. Pavement Des. (2023). https://doi.org/10.1080/14680629.2023.2230298Himmeto ˘glu, S.; Delice, Y.; Aydo ˘gan, E.K.; Uzal, B.: Green building envelope designs in different climate and seismic zones: multi-objective ANN-based genetic algorithm. Sustain. Energy Technol. Assess. 53, 1–17 (2022). https://doi.org/10.1016/j.seta. 2022.102505Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N.: Explainable artificial intelligence: a comprehensive review. Artif. Intell. Rev. 55, 3503–3568 (2022). https://doi.org/10.1007/s10462-021-10088-yPolo-Mendoza, R.; Martinez-Arguelles, G.; Peñabaena-Niebles, R.: A multi-objective optimization based on genetic algorithms for the sustainable design of Warm Mix Asphalt (WMA). Int. J. Pavement Eng. 24, 2074417 (2023). https://doi.org/10.1080/1029 8436.2022.2074417Białek, J.; Bujalski, W.; Wojdan, K.; Guzek, M.; Kurek, T.: Dataset level explanation of heat demand forecasting ANN with SHAP. Energy 261, 1–12 (2022). https://doi.org/10.1016/j.energy.2022.12 5075Polo-Mendoza, R.; Duque, J.; Mašín, D.; Turbay, E.; Acosta, C.: Implementation of deep neural networks and statistical methods to predict the resilient modulus of soils. Int. J. Pavement Eng. 24, 2257852 (2023). https://doi.org/10.1080/10298436.2023.2257852Hamim, A.; Yusoff, N.I.M.; Omar, H.A.; Jamaludin, N.A.A.; Hassan, N.A.; El-Shafie, A.; Ceylan, H.: Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data. Constr. Build. Mater. 257, 1–14 (2020). https://doi.org/10.1016/j. conbuildmat.2020.119549Polo-Mendoza, R.; Martinez-Arguelles, G.; Peñabaena-Niebles, R.: Environmental optimization of warm mix asphalt (WMA) design with recycled concrete aggregates (RCA) inclusion through artificial intelligence (AI) techniques. Res. Eng. 17, 1–15 (2023). https://doi.org/10.1016/j.rineng.2023.100984Zdravkovi´c, S.; Kavitha, L.; Satari´c, M.V.; Zekovi´c, S.; Petrovi´c, J.: Modified extended tanh-function method and nonlinear dynamics of microtubules. Chaos Solitons Fractals 45, 1378–1386 (2012). https://doi.org/10.1016/j.chaos.2012.07.009Wuraola, A.; Patel, N.: Resource efficient activation functions for neural network accelerators. Neurocomputing 482, 163–185 (2022)Liu, K.; Shi,W.; Huang, C.; Zeng, D.: Cost effective Tanh activation function circuits based on fast piecewise linear logic. Microelectron. J. 138, 1–9 (2023). https://doi.org/10.1016/j.mejo.2023.10 5821Kingma, D.P.; Ba, J.L.: Amax: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR), pp. 1–15 (2015)Pandi Chandran, P.; Hema Rajini, N.; Jeyakarthic, M.: Optimal deep belief network enabled malware detection and classification model. Intell. Autom. Soft Comput. (2023). https://doi.org/10.32 604/iasc.2023.029946Obayya, M.; Maashi, M.S.; Nemri, N.; Mohsen, H.; Motwakel, A.; Osman, A.E.; Alneil, A.A.; Alsaid, M.I.: Hyperparameter optimizer with deep learning-based decision-support systems for histopathological breast cancer diagnosis. Cancers 15, 1–19 (2023). https://doi.org/10.3390/cancers15030885Sadykov, M.; Haines, S.; Broadmeadow, M.; Walker, G.; Holmes, D.W.: Practical evaluation of lithium-ion battery state-of-charge estimation using time-series machine learning for electric vehicles. Energies 16, 1–34 (2023). https://doi.org/10.3390/en16041628Zhang, S.; Lei, H.; Zhou, Z.; Wang, G.; Qiu, B.: Fatigue life analysis of high-strength bolts based on machine learning method and SHapley Additive exPlanations (SHAP) approach. Structures 51, 275–287 (2023). https://doi.org/10.1016/j.istruc.2023.03.060Nicolson, A.; Paliwal, K.K.: Deep learning for minimum meansquare error approaches to speech enhancement. Speech Commun. 111, 44–55 (2019). https://doi.org/10.1016/j.specom.2019.06.002Koya, B.P.; Aneja, S.; Gupta, R.; Valeo, C.: Comparative analysis of different machine learning algorithms to predict mechanical properties of concrete. Mech. Adv. Mater. Struct. 29, 4032–4043 (2022). https://doi.org/10.1080/15376494.2021.1917021Vilares Ferro, M.; Doval Mosquera, Y.; Ribadas Pena, F.J.; Darriba Bilbao, V.M.: Early stopping by correlating online indicators in neural networks. Neural Netw. 159, 109–124 (2023). https://doi. org/10.1016/j.neunet.2022.11.035Zeng, J.; Zhang, M.; Lin, S.-B.: Fully corrective gradient boosting with squared hinge: fast learning rates and early stopping. Neural Netw. 147, 136–151 (2022). https://doi.org/10.1016/j.neunet.2021. 12.016Singh, V.; Pencina, M.; Einstein, A.J.; Liang, J.X.; Berman, D.S.; Slomka, P.: Impact of train/test sample regimen on performance estimate stability of machine learning in cardiovascular imaging. Sci. Rep. 11, 1–8 (2021). https://doi.org/10.1038/s41598-021-93 651-5Xu, Y.; Goodacre, R.: On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2, 249–262 (2018). https://doi.org/10. 1007/s41664-018-0068-2Quinn, T.P.; Le, V.; Cardilini, A.P.A.: Test set verification is an essential step in model building. Methods Ecol. Evol. 12, 127–129 (2021). https://doi.org/10.1111/2041-210X.13495Straub, J.: Machine learning performance validation and training using a ‘perfect’ expert system. MethodsX 8, 1–6 (2021). https:// doi.org/10.1016/j.mex.2021.101477Polo-Mendoza, R.; Duque, J.; Mašín, D.: Prediction of California bearing ratio and modified proctor parameters using deep neural networks and multiple linear regression: a case study of granular soils. Case Stud. Constr. Mater. 20, 1–17 (2024). https://doi.org/ 10.1016/j.cscm.2023.e02800Li, Z.: Extracting spatial effects from machine learning model using local interpretation method: an example of SHAP and XGBoost. Comput. Environ. Urban Syst. 96, 1–18 (2022). https://doi.org/10. 1016/j.compenvurbsys.2022.101845Kim, Y.; Kim, Y.: Explainable heat-related mortality with random forest and SHapley Additive exPlanations (SHAP) models. Sustain. Cities Soc. 79, 1–15 (2022). https://doi.org/10.1016/j.scs.2022.10 3677Lin, K.; Gao, Y.: Model interpretability of financial fraud detection by group SHAP. Expert Syst. Appl. 210, 1–9 (2022). https://doi. org/10.1016/j.eswa.2022.118354Kashifi, M.T.: Investigating two-wheelers risk factors for severe crashes using an interpretable machine learning approach and SHAP analysis. IATSS Res. 47, 357–371 (2023). https://doi.org/ 10.1016/j.iatssr.2023.07.005Meng, Y.; Yang, N.; Qian, Z.; Zhang, G.: What makes an online review more helpful: an interpretation framework using XGBoost and SHAP values. J. Theor. Appl. Electron. Commer. Res. 16, 466–490 (2021). https://doi.org/10.3390/jtaer16030029Scavuzzo, C.M.; Scavuzzo, J.M.; Campero, M.N.; Anegagrie, M.; Aramendia, A.A.; Benito, A.; Periago, V.: Feature importance: opening a soil-transmitted helminth machine learning model via SHAP. Infect. Dis. Model. 7, 262–276 (2022). https://doi.org/10. 1016/j.idm.2022.01.004Tang, Y.; Wang, C.: Performance modeling on DaVinci AI core. J. Parallel Distrib. Comput. 175, 134–149 (2023). https://doi.org/10. 1016/j.jpdc.2023.01.008Dube, P.; Suk, T.; Wang, C.: AI gauge: runtime estimation for deep learning in the cloud. In: 31st International Symposium on Computer Architecture and High Performance Computing (SBACPAD), pp. 160–167 (2019)Aghapour, Z.; Sharifian, S.; Taheri, H.: Task offloading and resource allocation algorithm based on deep reinforcement learning for distributed AI execution tasks in IoT edge computing environments. Comput. Netw. 223, 1–17 (2023). https://doi.org/10.1016/ j.comnet.2023.109577Assaf, A.M.; Haron, H.; Hamed, H.N.A.H.; Ghaleb, F.A.; Dalam, M.E.; Eisa, T.A.E.: Improving solar radiation forecasting utilizing data augmentation model generative adversarial networks with convolutional support vector machine (GAN-CSVR). Appl. Sci. 13, 1–23 (2023). https://doi.org/10.3390/app132312768Harrou, F.; Dairi, A.; Dorbane, A.; Sun, Y.: Energy consumption prediction in water treatment plants using deep learning with data augmentation. Res. Eng. 20, 1–14 (2023). https://doi.org/10.1016/ j.rineng.2023.101428Liu, K.-H.; Xie, T.-Y.; Cai, Z.-K.; Chen, G.-M.; Zhao, X.-Y.: Datadriven prediction and optimization of axial compressive strength for FRP-reinforced CFST columns using synthetic data augmentation. Eng. Struct. 300, 1–16 (2024). https://doi.org/10.1016/j.engs truct.2023.117225Mumuni, A.; Mumuni, F.: Data augmentation: a comprehensive survey of modern approaches. Array 16, 1–27 (2022). https://doi. org/10.1016/j.array.2022.100258Maharana, K.; Mondal, S.; Nemade, B.: A review: data preprocessing and data augmentation techniques. Glob. Transitions Proc. 3, 91–99 (2022). https://doi.org/10.1016/j.gltp.2022.04.020Walubita, L.F.; Martinez-Arguelles, G.; Polo-Mendoza, R.; IckLee, S.; Fuentes, L.: Comparative environmental assessment of rigid, flexible, and perpetual pavement: a case study of Texas. Sustainability 14, 1–22 (2022). https://doi.org/10.3390/su14169983Gupta, S.; Chaudhary, S.: State of the art review on supplementary cementitious materials in India—II: characteristics of SCMs, effect on concrete and environmental impact. J. Clean. Prod. 357, 1–19 (2022). https://doi.org/10.1016/j.jclepro.2022.131945Sharma, R.K.; Singh, D.; Dasaka, S.M.: Investigating supplementary cementitious materials’ effects on stabilized aggregate performance, behaviour, and design aspects. Constr. Build. Mater. 411, 1–16 (2024). https://doi.org/10.1016/j.conbuildmat.2023.13 456414365143511049Computational modellingConcrete structuresConstruction materialsDeep neural networksMachine learningPortland cement concretePublicationORIGINALDevelopment of a Machine Learning (ML)-Based Computational Model.pdfDevelopment of a Machine Learning (ML)-Based Computational Model.pdfapplication/pdf2763682https://repositorio.cuc.edu.co/bitstreams/640afd64-f03c-4432-8110-0b128dee2e56/download79594e959ef1498796741ba97faf792aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/8cf055cf-ed8d-4c7b-8f2c-67b2c2294da4/download73a5432e0b76442b22b026844140d683MD52TEXTDevelopment of a Machine Learning (ML)-Based Computational Model.pdf.txtDevelopment of a Machine Learning (ML)-Based Computational Model.pdf.txtExtracted texttext/plain59311https://repositorio.cuc.edu.co/bitstreams/9d705359-a8b8-47cf-941c-34b11dd4c562/downloadbcd06dbcaa28451dcd13a9358418e60eMD53THUMBNAILDevelopment of a Machine Learning (ML)-Based Computational Model.pdf.jpgDevelopment of a Machine Learning (ML)-Based Computational Model.pdf.jpgGenerated Thumbnailimage/jpeg15392https://repositorio.cuc.edu.co/bitstreams/7fab4be2-3787-4eed-8146-d6507fe868ea/downloadb32a28d234a79b8dbeaeb806a370cf9bMD5411323/13827oai:repositorio.cuc.edu.co:11323/138272024-11-26 04:00:33.545https://creativecommons.org/licenses/by/4.0/© The Author(s) 2024.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |