Development of a Machine Learning (ML)-based computational model to estimate the engineering properties of Portland Cement Concrete (PCC)
Portland cement concrete (PCC) is the construction material most used worldwide. Hence, its proper characterization is fundamental for the daily-basis engineering practice. Nonetheless, the experimental measurements of the PCC’s engineering properties (i.e., Poisson’s Ratio -v-, Elastic Modulus -E-,...
- Autores:
-
Polo Mendoza, Rodrigo
Martínez Arguelles, Gilberto
Peñabaena Niebles, Rita
Duque, Jose
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13827
- Acceso en línea:
- https://hdl.handle.net/11323/13827
https://repositorio.cuc.edu.co/
- Palabra clave:
- Computational modelling
Concrete structures
Construction materials
Deep neural networks
Machine learning
Portland cement concrete
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)