Understanding of inverse proportional reasoning in pre-service teachers
From an early age, understanding proportional reasoning is a fundamental pillar in mathematics education, and therefore, teachers should have a thorough knowledge of it. Despite its significance, there are few studies that analyse the difficulties that student teachers have in understanding proporti...
- Autores:
-
Cabero, Ismael
Santágueda-Villanueva, María
Villalobos-Antúnez, Jose Vicente
Roig, Ana Isabel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7226
- Acceso en línea:
- https://hdl.handle.net/11323/7226
https://repositorio.cuc.edu.co/
- Palabra clave:
- Inverse proportionality
Problem-solving strategies
Intensive quantity
Extensive quantity
Proportional reasoning
Tabular and graphic representation
Pre-service teachers
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_36fa7432e51d57450e5805bd4302b295 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7226 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Understanding of inverse proportional reasoning in pre-service teachers |
title |
Understanding of inverse proportional reasoning in pre-service teachers |
spellingShingle |
Understanding of inverse proportional reasoning in pre-service teachers Inverse proportionality Problem-solving strategies Intensive quantity Extensive quantity Proportional reasoning Tabular and graphic representation Pre-service teachers |
title_short |
Understanding of inverse proportional reasoning in pre-service teachers |
title_full |
Understanding of inverse proportional reasoning in pre-service teachers |
title_fullStr |
Understanding of inverse proportional reasoning in pre-service teachers |
title_full_unstemmed |
Understanding of inverse proportional reasoning in pre-service teachers |
title_sort |
Understanding of inverse proportional reasoning in pre-service teachers |
dc.creator.fl_str_mv |
Cabero, Ismael Santágueda-Villanueva, María Villalobos-Antúnez, Jose Vicente Roig, Ana Isabel |
dc.contributor.author.spa.fl_str_mv |
Cabero, Ismael Santágueda-Villanueva, María Villalobos-Antúnez, Jose Vicente Roig, Ana Isabel |
dc.subject.spa.fl_str_mv |
Inverse proportionality Problem-solving strategies Intensive quantity Extensive quantity Proportional reasoning Tabular and graphic representation Pre-service teachers |
topic |
Inverse proportionality Problem-solving strategies Intensive quantity Extensive quantity Proportional reasoning Tabular and graphic representation Pre-service teachers |
description |
From an early age, understanding proportional reasoning is a fundamental pillar in mathematics education, and therefore, teachers should have a thorough knowledge of it. Despite its significance, there are few studies that analyse the difficulties that student teachers have in understanding proportionality, and even less so inverse proportionality. We emphasised inverse missing-value problems by analysing them according to the type of unknown and the representation used. We checked which strategies they use to solve them and related them to other generic problems of proportional reasoning. For such purposes, we used a combined quantitative and qualitative empirical study applied to how pre-service teachers solve fifteen problems. The results show that the representations used in the statements aid their understanding and help solve the problems. Similarly, it is shown here that certain problem-solving strategies complicate proportional reasoning in pre-service teachers. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-09T19:28:28Z |
dc.date.available.none.fl_str_mv |
2020-11-09T19:28:28Z |
dc.date.issued.none.fl_str_mv |
2020-09-29 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2227-7102 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7226 |
dc.identifier.doi.spa.fl_str_mv |
doi:10.3390/educsci10110308 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2227-7102 doi:10.3390/educsci10110308 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7226 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Lesh, R.; Post, T.R.; Behr, M. Proportional reasoning. In Number Concepts and Operations in the Middle Grades; National Council of Teachers of Mathematics, Lawrence Erlbaum Associates: Reston, VA, USA, 1988; pp. 93–118. 2. Ben-Chaim, D.; Keret, Y.; Ilany, B.S. Ratio and Proportion; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. 3. National Council of Teachers of Mathematics; Commission on Standards for School Mathematics. Curriculum and Evaluation Standards for School Mathematics; National Council of Teachers of Mathematics: Reston, VA, USA, 1989. 4. Riley, K. Teachers understanding of proportional reasoning. In Proceedings of the 32nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, , Columbus, OH, USA, 28–31 October 2010, Volume 6, pp. 1055–1061. 5. Arican, M. Preservice middle and high school mathematics teachers’ strategies when solving proportion problems. Int. J. Sci. Math. Educ. 2018, 16, 315–335. [CrossRef] 6. Lamon, S.J. Rational numbers and proportional reasoning: Toward a theoretical framework for research. Second. Handb. Res. Math. Teach. Learn. 2007, 1, 629–667. 7. Izsák, A.; Jacobson, E. Understanding Teachers’ Inferences of Proportionality Between Quantities that Form a Constant Difference or Constant Product; National Council of Teachers of Mathematics Research Presession: Denver, CO, USA, 2013. 8. Akar, G. Different levels of reasoning in within state ratio conception and the conceptualization of rate: A possible example. In Proceedings of the 32nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, , Columbus, OH, USA, 28–31 October 2010, Volume 4, pp. 711–719. 9. Simon, M.A.; Blume, G.W. Mathematical modeling as a component of understanding ratio-as-measure: A study of prospective elementary teachers. J. Math. Behav. 1994, 13, 183–197. [CrossRef] 10. Harel, G.; Behr, M. Teachers’ Solutions for Multiplicative Problems. Hiroshima J. Math. Educ. 1995, 3, 31–51. 11. Orrill, C.H.; Izsák, A.; Cohen, A.; Templin, J.; Lobato, J. Preliminary Observations of Teachers’ Multiplicative Reasoning: Insights from Does It Work and Diagnosing Teachers’ Multiplicative Reasoning Projects; Kaput Center for Research and Innovation in STEM Education, University of Massachusetts: Dartmouth, MA, USA, 2010. 12. Post, T.R.; Harel, G.; Behr, M.; Lesh, R. Intermediate Teachers’ Knowledge of Rational Number Concepts. In Integrating Research on Teaching and Learning Mathematics; State University of NY Press: New York, NY, USA, 1991; pp. 177–198. 13. Cramer, K.A.; Post, T.; Currier, S. Learning and teaching ratio and proportion: Research implications: Middle grades mathematics. In Research Ideas for the Classroom: Middle Grades Mathematics; Macmillan Publishing Company: New York, NY, USA, 1993; pp. 159–178. 14. Lim, K.H. Burning the candle at just one end. Math. Teach. Middle Sch. 2009, 14, 492–500. 15. Arican, M. Exploring Preservice Middle and High School Mathematics Teachers’ Understanding of Directly and Inversely Proportional Relationships. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2015. 16. Fisher, L.C. Strategies used by secondary mathematics teachers to solve proportion problems. J. Res. Math. Educ. 1988, 19 , 157–168. [CrossRef] 17. Lobato, J.; Ellis, A.; Zbiek, R.M. Developing Essential Understanding of Ratios, Proportions, and Proportional Reasoning for Teaching Mathematics: Grades 6–8; ERIC: Washington, DC, USA, 2010. 18. Sowder, J.; Armstrong, B.; Lamon, S.; Simon, M.; Sowder, L.; Thompson, A. Educating teachers to teach multiplicative structures in the middle grades. J. Math. Teach. Educ. 1998, 1, 127–155. [CrossRef] 19. Stemn, B.S. Building middle school students’ understanding of proportional reasoning through mathematical investigation. Education 3–13 2008, 36, 383–392. [CrossRef] 20. Becerra, M.V.; Pancorbo, L.; Martínez, R.; Rodríguez, R. Matemáticas 2◦ ESO; McGraw-Hill: Madrid , Spain 1997. 21. Sallán, J.M.G.; Vizcarra, R.E. Proporcionalidad aritmética: Buscando alternativas a la enseñanza tradicional. Suma Rev. Sobre Ense NAnza Aprendiz. Las MatemÁTicas 2009, 62, 35–48. 22. Initiative, C.C.S.S. Common Core State Standards for Mathematics. 2010. Available online: http://www. corestandards.org/assets/CCSSI_Math%20Standards.pdf (accessed on 25 July 2020). 23. Beckmann, S. Mathematics for Elementary Teachers, 3rd ed.; Pearson Addison-Wesley: Boston, MA, USA, 2011. 24. NCTM. Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics; NCTM: Reston, VA, USA, 2006. 25. Lamon, S.J. Teaching Fractions and Ratios for Understanding: Essential Content Knowledge and Instructional Strategies for Teachers; Routledge: London, UK, 2020. 26. Vergnaud, G. Multiplicative Structures; Lesh, R., Landau, M., Eds.; Academic Press: Cambridge, MA, USA, 1983; pp. 127–174. 27. Vergnaud, G. Multiplicative Structures; Hiebert, J., Behr, M., Eds.; National Council of Teachers of Mathematics: Reston, VA, USA, 1988; pp. 141–161. 28. Beckmann, S.; Izsák, A. Two perspectives on proportional relationships: Extending complementary origins of multiplication in terms of quantities. J. Res. Math. Educ. 2015, 46, 17–38. [CrossRef] 29. Arican, M. Preservice mathematics teachers’ understanding of and abilities to differentiate proportional relationships from nonproportional relationships. Int. J. Sci. Math. Educ. 2019, 17, 1423–1443. [CrossRef] 30. Cabero, I.; Epifanio, I. Finding Archetypal Patterns for Binary Questionnaires; SORT: Barcelona, Spain 2020. 31. Sinn, R.; Spence, D.; Poitevint, M. Rates Teaching Research Project; San Diego, CA, USA. 2010. Available online: http://faculty.ung.edu/djspence/Presentations/PBRateProblems/PatternBlockRatesWorksheet.pdf (accessed on 29 October 2020). 32. Canada, D.; Gilbert, M.; Adolphson, K. Conceptions and misconceptions of elementary preservice teachers in proportional reasoning. In Proceedings of the 32th conference of the International Group for the Psychology of Mathematics Education, Columbus, OH, USA, 28–31 October 2010; Figueras, O., Cortina, J., Alatorre, S., Sepulveda, T.R.A., Eds.; Volume 2, pp. 249–256. 33. Cox, D.C. Similarity in middle school mathematics: At the crossroads of geometry and number. Math. Think. Learn. 2013, 15, 3–23. [CrossRef] 34. Tourniaire, F.; Pulos, S. Proportional reasoning: A review of the literature. Educ. Stud. Math. 1985, 16, 181–204. [CrossRef] 35. Karplus, R. Proportional reasoning of early adolescents. In Acquisition of Mathematics Concepts and Processes; Academic Press: London, UK, 1983; pp. 45–90. 36. Lamon, S.J. Ratio and proportion: Connecting content and children’s thinking. J. Res. Math. Educ. 1993, 24, 41–61. [CrossRef] 37. Schwartz, J.L. Intensive quantity and referent transforming arithmetic operations. Res. Agenda Math. Educ. Number Concepts Oper. Middle Grades 1988, 2, 41–52. 38. Kaput, J.; West, M.M. Missing-Value Proportional Problems: Factors Affecting Informal Reasoning Patterns. In The Development of Multiplicative Reasoning in the Learning of Mathematics; SUNY Press: Albany, NY, USA, 1994; pp. 235–287 39. Thompson, P. A Theoretical Model of Quantity-Based Reasoning in Arithmetic and Algebra; Center for Research in Mathematics & Science Education, San Diego State University: San Diego, CA, USA, 1990. 40. Weiland, T.; Orrill, C.H.; Nagar, G.G.; Brown, R.E.; Burke, J. Framing a robust understanding of proportional reasoning for teachers. J. Math. Teach. Educ. 2020, 1–24. [CrossRef] 41. Lamon, S. Second handbook of research on mathematics teaching and learning. Inf. Age Publ. Ration. Proportional Reason. Towar. Theor. Framew. Res. 2007, 1, 629–668. 42. Burgos, M.; Beltrán-Pellicer, P.; Giacomone, B.; Godino, J.D. Conocimientos y competencia de futuros profesores de matemáticas en tareas de proporcionalidad. Educação e Pesqui. 2018, 44. [CrossRef] 43. Martínez Juste, S.; Muñoz Escolano, J.M.; Oller Marcén, A.M.; Ortega del Rincón, T. Análisis de problemas de proporcionalidad compuesta en libros de texto de 2o de ESO. Rev. Latinoam. Investig. MatemÁTica Educ. 2017, 20, 95–122. [CrossRef] 44. López, M.J.G.; Guzmán, P.G. Magnitudes y medida: Medidas directas. In Matemáticas Para Maestros de Educación Primaria; Pirámide, Madrid, Spain, 2011; pp. 351–374. 45. Valverde, G. Competencias Matemáticas Promovidas Desde la Razón y la Proporcionalidad en la Formación Inicial de Maestros de Educación Primaria; Universidad de Granada: Granada, Spain, 2013. 46. Kelle, U.; Buchholtz, N. The combination of qualitative and quantitative research methods in mathematics education: A “mixed methods” study on the development of the professional knowledge of teachers. In Approaches to Qualitative Research in Mathematics Education; Springer: Berlin/Heidelberg, Germany, 2015; pp. 321–361. 47. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. 48. Clement, J. Algebra word problem solutions: Thought processes underlying a common misconception. J. Res. Math. Educ. 1982, 13, 16–30. [CrossRef] 49. Karplus, R.; Adi, H.; Lawson, A.E. Intellectual development beyond elementary school VIII: proportional, probabilistic, and correlational reasoning. Sch. Sci. Math. 1980, 80, 673–83. [CrossRef] 50. Rupley, W.H. The effects of numerical characteristics on the difficulty of proportion problems. Diss. Abstr. Int. 1982, 254–263. 51. Buforn, Á.; Llinares, S.; Fernández, C. Características del conocimiento de los estudiantes para maestro españoles en relación con la fracción, razón y proporción. Rev. Mex. Investig. Educ. 2018, 23, 229–251. 52. Burgos, M.; Godino, J.D. Prospective primary school teachers’ competence for analysing the difficulties in solving proportionality problem. Math. Educ. Res. J. 2020, 1–23. [CrossRef] 53. Son, J.W. How preservice teachers interpret and respond to student errors: Ratio and proportion in similar rectangles. Educ. Stud. Math. 2013, 84, 49–70. [CrossRef] 54. Sztajn, P.; Confrey, J.; Wilson, P.H.; Edgington, C. Learning trajectory based instruction: Toward a theory of teaching. Educ. Res. 2012, 41, 147–156. [CrossRef] 55. Weiland, T.; Orrill, C.H.; Brown, R.E.; Nagar, G.G. Mathematics teachers’ ability to identify situations appropriate for proportional reasoning. Res. Math. Educ. 2019, 1–18. [CrossRef] |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Education Sciences |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2227-7102/10/11/308/xml |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/4889c582-e7e7-49ff-946c-ffe751d7c782/download https://repositorio.cuc.edu.co/bitstreams/0b55420d-612d-48ec-9ef4-ea73228f0c37/download https://repositorio.cuc.edu.co/bitstreams/845dc473-817a-40f1-9ba9-e75f291941e6/download https://repositorio.cuc.edu.co/bitstreams/3bbe473a-606a-4959-926f-34019b25f57c/download https://repositorio.cuc.edu.co/bitstreams/4d0b1b27-f55b-4349-a841-486f3adee2fc/download |
bitstream.checksum.fl_str_mv |
a0f1167261d6cd126c4081106d04200b 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 1382797296831fe6f7a547654fbb420f f5c53bd97dabb0001f8fb4088d431c07 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760786496815104 |
spelling |
Cabero, IsmaelSantágueda-Villanueva, MaríaVillalobos-Antúnez, Jose VicenteRoig, Ana Isabel2020-11-09T19:28:28Z2020-11-09T19:28:28Z2020-09-292227-7102https://hdl.handle.net/11323/7226doi:10.3390/educsci10110308Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/From an early age, understanding proportional reasoning is a fundamental pillar in mathematics education, and therefore, teachers should have a thorough knowledge of it. Despite its significance, there are few studies that analyse the difficulties that student teachers have in understanding proportionality, and even less so inverse proportionality. We emphasised inverse missing-value problems by analysing them according to the type of unknown and the representation used. We checked which strategies they use to solve them and related them to other generic problems of proportional reasoning. For such purposes, we used a combined quantitative and qualitative empirical study applied to how pre-service teachers solve fifteen problems. The results show that the representations used in the statements aid their understanding and help solve the problems. Similarly, it is shown here that certain problem-solving strategies complicate proportional reasoning in pre-service teachers.Cabero, Ismael-will be generated-orcid-0000-0003-1839-7205-600Santágueda-Villanueva, María-will be generated-orcid-0000-0002-5472-7972-600Villalobos-Antúnez, Jose VicenteRoig, Ana Isabel-will be generated-orcid-0000-0003-4522-8327-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Education Scienceshttps://www.mdpi.com/2227-7102/10/11/308/xmlInverse proportionalityProblem-solving strategiesIntensive quantityExtensive quantityProportional reasoningTabular and graphic representationPre-service teachersUnderstanding of inverse proportional reasoning in pre-service teachersArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Lesh, R.; Post, T.R.; Behr, M. Proportional reasoning. In Number Concepts and Operations in the Middle Grades; National Council of Teachers of Mathematics, Lawrence Erlbaum Associates: Reston, VA, USA, 1988; pp. 93–118.2. Ben-Chaim, D.; Keret, Y.; Ilany, B.S. Ratio and Proportion; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.3. National Council of Teachers of Mathematics; Commission on Standards for School Mathematics. Curriculum and Evaluation Standards for School Mathematics; National Council of Teachers of Mathematics: Reston, VA, USA, 1989.4. Riley, K. Teachers understanding of proportional reasoning. In Proceedings of the 32nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, , Columbus, OH, USA, 28–31 October 2010, Volume 6, pp. 1055–1061.5. Arican, M. Preservice middle and high school mathematics teachers’ strategies when solving proportion problems. Int. J. Sci. Math. Educ. 2018, 16, 315–335. [CrossRef]6. Lamon, S.J. Rational numbers and proportional reasoning: Toward a theoretical framework for research. Second. Handb. Res. Math. Teach. Learn. 2007, 1, 629–667.7. Izsák, A.; Jacobson, E. Understanding Teachers’ Inferences of Proportionality Between Quantities that Form a Constant Difference or Constant Product; National Council of Teachers of Mathematics Research Presession: Denver, CO, USA, 2013.8. Akar, G. Different levels of reasoning in within state ratio conception and the conceptualization of rate: A possible example. In Proceedings of the 32nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, , Columbus, OH, USA, 28–31 October 2010, Volume 4, pp. 711–719.9. Simon, M.A.; Blume, G.W. Mathematical modeling as a component of understanding ratio-as-measure: A study of prospective elementary teachers. J. Math. Behav. 1994, 13, 183–197. [CrossRef]10. Harel, G.; Behr, M. Teachers’ Solutions for Multiplicative Problems. Hiroshima J. Math. Educ. 1995, 3, 31–51.11. Orrill, C.H.; Izsák, A.; Cohen, A.; Templin, J.; Lobato, J. Preliminary Observations of Teachers’ Multiplicative Reasoning: Insights from Does It Work and Diagnosing Teachers’ Multiplicative Reasoning Projects; Kaput Center for Research and Innovation in STEM Education, University of Massachusetts: Dartmouth, MA, USA, 2010.12. Post, T.R.; Harel, G.; Behr, M.; Lesh, R. Intermediate Teachers’ Knowledge of Rational Number Concepts. In Integrating Research on Teaching and Learning Mathematics; State University of NY Press: New York, NY, USA, 1991; pp. 177–198.13. Cramer, K.A.; Post, T.; Currier, S. Learning and teaching ratio and proportion: Research implications: Middle grades mathematics. In Research Ideas for the Classroom: Middle Grades Mathematics; Macmillan Publishing Company: New York, NY, USA, 1993; pp. 159–178.14. Lim, K.H. Burning the candle at just one end. Math. Teach. Middle Sch. 2009, 14, 492–500.15. Arican, M. Exploring Preservice Middle and High School Mathematics Teachers’ Understanding of Directly and Inversely Proportional Relationships. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2015.16. Fisher, L.C. Strategies used by secondary mathematics teachers to solve proportion problems. J. Res. Math. Educ. 1988, 19 , 157–168. [CrossRef]17. Lobato, J.; Ellis, A.; Zbiek, R.M. Developing Essential Understanding of Ratios, Proportions, and Proportional Reasoning for Teaching Mathematics: Grades 6–8; ERIC: Washington, DC, USA, 2010.18. Sowder, J.; Armstrong, B.; Lamon, S.; Simon, M.; Sowder, L.; Thompson, A. Educating teachers to teach multiplicative structures in the middle grades. J. Math. Teach. Educ. 1998, 1, 127–155. [CrossRef]19. Stemn, B.S. Building middle school students’ understanding of proportional reasoning through mathematical investigation. Education 3–13 2008, 36, 383–392. [CrossRef]20. Becerra, M.V.; Pancorbo, L.; Martínez, R.; Rodríguez, R. Matemáticas 2◦ ESO; McGraw-Hill: Madrid , Spain 1997.21. Sallán, J.M.G.; Vizcarra, R.E. Proporcionalidad aritmética: Buscando alternativas a la enseñanza tradicional. Suma Rev. Sobre Ense NAnza Aprendiz. Las MatemÁTicas 2009, 62, 35–48.22. Initiative, C.C.S.S. Common Core State Standards for Mathematics. 2010. Available online: http://www. corestandards.org/assets/CCSSI_Math%20Standards.pdf (accessed on 25 July 2020).23. Beckmann, S. Mathematics for Elementary Teachers, 3rd ed.; Pearson Addison-Wesley: Boston, MA, USA, 2011.24. NCTM. Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics; NCTM: Reston, VA, USA, 2006.25. Lamon, S.J. Teaching Fractions and Ratios for Understanding: Essential Content Knowledge and Instructional Strategies for Teachers; Routledge: London, UK, 2020.26. Vergnaud, G. Multiplicative Structures; Lesh, R., Landau, M., Eds.; Academic Press: Cambridge, MA, USA, 1983; pp. 127–174.27. Vergnaud, G. Multiplicative Structures; Hiebert, J., Behr, M., Eds.; National Council of Teachers of Mathematics: Reston, VA, USA, 1988; pp. 141–161.28. Beckmann, S.; Izsák, A. Two perspectives on proportional relationships: Extending complementary origins of multiplication in terms of quantities. J. Res. Math. Educ. 2015, 46, 17–38. [CrossRef]29. Arican, M. Preservice mathematics teachers’ understanding of and abilities to differentiate proportional relationships from nonproportional relationships. Int. J. Sci. Math. Educ. 2019, 17, 1423–1443. [CrossRef]30. Cabero, I.; Epifanio, I. Finding Archetypal Patterns for Binary Questionnaires; SORT: Barcelona, Spain 2020.31. Sinn, R.; Spence, D.; Poitevint, M. Rates Teaching Research Project; San Diego, CA, USA. 2010. Available online: http://faculty.ung.edu/djspence/Presentations/PBRateProblems/PatternBlockRatesWorksheet.pdf (accessed on 29 October 2020).32. Canada, D.; Gilbert, M.; Adolphson, K. Conceptions and misconceptions of elementary preservice teachers in proportional reasoning. In Proceedings of the 32th conference of the International Group for the Psychology of Mathematics Education, Columbus, OH, USA, 28–31 October 2010; Figueras, O., Cortina, J., Alatorre, S., Sepulveda, T.R.A., Eds.; Volume 2, pp. 249–256.33. Cox, D.C. Similarity in middle school mathematics: At the crossroads of geometry and number. Math. Think. Learn. 2013, 15, 3–23. [CrossRef]34. Tourniaire, F.; Pulos, S. Proportional reasoning: A review of the literature. Educ. Stud. Math. 1985, 16, 181–204. [CrossRef]35. Karplus, R. Proportional reasoning of early adolescents. In Acquisition of Mathematics Concepts and Processes; Academic Press: London, UK, 1983; pp. 45–90.36. Lamon, S.J. Ratio and proportion: Connecting content and children’s thinking. J. Res. Math. Educ. 1993, 24, 41–61. [CrossRef]37. Schwartz, J.L. Intensive quantity and referent transforming arithmetic operations. Res. Agenda Math. Educ. Number Concepts Oper. Middle Grades 1988, 2, 41–52.38. Kaput, J.; West, M.M. Missing-Value Proportional Problems: Factors Affecting Informal Reasoning Patterns. In The Development of Multiplicative Reasoning in the Learning of Mathematics; SUNY Press: Albany, NY, USA, 1994; pp. 235–28739. Thompson, P. A Theoretical Model of Quantity-Based Reasoning in Arithmetic and Algebra; Center for Research in Mathematics & Science Education, San Diego State University: San Diego, CA, USA, 1990.40. Weiland, T.; Orrill, C.H.; Nagar, G.G.; Brown, R.E.; Burke, J. Framing a robust understanding of proportional reasoning for teachers. J. Math. Teach. Educ. 2020, 1–24. [CrossRef]41. Lamon, S. Second handbook of research on mathematics teaching and learning. Inf. Age Publ. Ration. Proportional Reason. Towar. Theor. Framew. Res. 2007, 1, 629–668.42. Burgos, M.; Beltrán-Pellicer, P.; Giacomone, B.; Godino, J.D. Conocimientos y competencia de futuros profesores de matemáticas en tareas de proporcionalidad. Educação e Pesqui. 2018, 44. [CrossRef]43. Martínez Juste, S.; Muñoz Escolano, J.M.; Oller Marcén, A.M.; Ortega del Rincón, T. Análisis de problemas de proporcionalidad compuesta en libros de texto de 2o de ESO. Rev. Latinoam. Investig. MatemÁTica Educ. 2017, 20, 95–122. [CrossRef]44. López, M.J.G.; Guzmán, P.G. Magnitudes y medida: Medidas directas. In Matemáticas Para Maestros de Educación Primaria; Pirámide, Madrid, Spain, 2011; pp. 351–374.45. Valverde, G. Competencias Matemáticas Promovidas Desde la Razón y la Proporcionalidad en la Formación Inicial de Maestros de Educación Primaria; Universidad de Granada: Granada, Spain, 2013.46. Kelle, U.; Buchholtz, N. The combination of qualitative and quantitative research methods in mathematics education: A “mixed methods” study on the development of the professional knowledge of teachers. In Approaches to Qualitative Research in Mathematics Education; Springer: Berlin/Heidelberg, Germany, 2015; pp. 321–361.47. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.48. Clement, J. Algebra word problem solutions: Thought processes underlying a common misconception. J. Res. Math. Educ. 1982, 13, 16–30. [CrossRef]49. Karplus, R.; Adi, H.; Lawson, A.E. Intellectual development beyond elementary school VIII: proportional, probabilistic, and correlational reasoning. Sch. Sci. Math. 1980, 80, 673–83. [CrossRef]50. Rupley, W.H. The effects of numerical characteristics on the difficulty of proportion problems. Diss. Abstr. Int. 1982, 254–263.51. Buforn, Á.; Llinares, S.; Fernández, C. Características del conocimiento de los estudiantes para maestro españoles en relación con la fracción, razón y proporción. Rev. Mex. Investig. Educ. 2018, 23, 229–251.52. Burgos, M.; Godino, J.D. Prospective primary school teachers’ competence for analysing the difficulties in solving proportionality problem. Math. Educ. Res. J. 2020, 1–23. [CrossRef]53. Son, J.W. How preservice teachers interpret and respond to student errors: Ratio and proportion in similar rectangles. Educ. Stud. Math. 2013, 84, 49–70. [CrossRef]54. Sztajn, P.; Confrey, J.; Wilson, P.H.; Edgington, C. Learning trajectory based instruction: Toward a theory of teaching. Educ. Res. 2012, 41, 147–156. [CrossRef]55. Weiland, T.; Orrill, C.H.; Brown, R.E.; Nagar, G.G. Mathematics teachers’ ability to identify situations appropriate for proportional reasoning. Res. Math. Educ. 2019, 1–18. [CrossRef]PublicationORIGINALUnderstanding of Inverse Proportional Reasoning in Pre-Service Teachers..pdfUnderstanding of Inverse Proportional Reasoning in Pre-Service Teachers..pdfapplication/pdf285452https://repositorio.cuc.edu.co/bitstreams/4889c582-e7e7-49ff-946c-ffe751d7c782/downloada0f1167261d6cd126c4081106d04200bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/0b55420d-612d-48ec-9ef4-ea73228f0c37/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/845dc473-817a-40f1-9ba9-e75f291941e6/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILUnderstanding of Inverse Proportional Reasoning in Pre-Service Teachers..pdf.jpgUnderstanding of Inverse Proportional Reasoning in Pre-Service Teachers..pdf.jpgimage/jpeg67350https://repositorio.cuc.edu.co/bitstreams/3bbe473a-606a-4959-926f-34019b25f57c/download1382797296831fe6f7a547654fbb420fMD54TEXTUnderstanding of Inverse Proportional Reasoning in Pre-Service Teachers..pdf.txtUnderstanding of Inverse Proportional Reasoning in Pre-Service Teachers..pdf.txttext/plain70563https://repositorio.cuc.edu.co/bitstreams/4d0b1b27-f55b-4349-a841-486f3adee2fc/downloadf5c53bd97dabb0001f8fb4088d431c07MD5511323/7226oai:repositorio.cuc.edu.co:11323/72262024-09-17 11:09:08.168http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |