Machine learning applications for photovoltaic system optimization in zero green energy buildings
In this paper, the energy supply of a zero-energy building with 220 square meters is considered using optimized nanocomposite solar panels with respect to maximum efficiency. An optimized hybrid machine learning method plays a key role in presenting solar panel modeling with over 0.99% accuracy. Pre...
- Autores:
-
Liu, Wei
Shen, Yedan
Aungkulanon, Pasura
Ghalandari, Mohammad
Le, Binh Nguyen
Alviz Meza, Anibal
Cardenas Escorcia, Yulineth
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10379
- Acceso en línea:
- https://hdl.handle.net/11323/10379
https://repositorio.cuc.edu.co/
- Palabra clave:
- Zero energy buildings
Machine learning
Optimization
Photovoltaic systems
Solar panel
Nano-composite material
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_364e62389c8111cce823a6163da5b800 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10379 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Machine learning applications for photovoltaic system optimization in zero green energy buildings |
title |
Machine learning applications for photovoltaic system optimization in zero green energy buildings |
spellingShingle |
Machine learning applications for photovoltaic system optimization in zero green energy buildings Zero energy buildings Machine learning Optimization Photovoltaic systems Solar panel Nano-composite material |
title_short |
Machine learning applications for photovoltaic system optimization in zero green energy buildings |
title_full |
Machine learning applications for photovoltaic system optimization in zero green energy buildings |
title_fullStr |
Machine learning applications for photovoltaic system optimization in zero green energy buildings |
title_full_unstemmed |
Machine learning applications for photovoltaic system optimization in zero green energy buildings |
title_sort |
Machine learning applications for photovoltaic system optimization in zero green energy buildings |
dc.creator.fl_str_mv |
Liu, Wei Shen, Yedan Aungkulanon, Pasura Ghalandari, Mohammad Le, Binh Nguyen Alviz Meza, Anibal Cardenas Escorcia, Yulineth |
dc.contributor.author.none.fl_str_mv |
Liu, Wei Shen, Yedan Aungkulanon, Pasura Ghalandari, Mohammad Le, Binh Nguyen Alviz Meza, Anibal Cardenas Escorcia, Yulineth |
dc.subject.proposal.eng.fl_str_mv |
Zero energy buildings Machine learning Optimization Photovoltaic systems Solar panel Nano-composite material |
topic |
Zero energy buildings Machine learning Optimization Photovoltaic systems Solar panel Nano-composite material |
description |
In this paper, the energy supply of a zero-energy building with 220 square meters is considered using optimized nanocomposite solar panels with respect to maximum efficiency. An optimized hybrid machine learning method plays a key role in presenting solar panel modeling with over 0.99% accuracy. Predicting the properties of the nanomaterial solar cell in four different seasons is performed by efficient support vector machines (SVM), and k-nearest neighbors (KNN) machine learning algorithms. In addition, the KNN algorithm is optimized by the Particle Swarm Optimization (PSO) method to improve the capabilities of KNN and reveal the best performance criteria for the photovoltaic modeling characteristics. The parameters of the nanocomposite cells are optimized using the proposed novel Multidisciplinary Optimization Method (MDO) to increase the efficiency of the solar panel by up to 170%. Optimization of solar cell performance with nanocomposite material under energy consumption constraints is carried out to propose the best construction of cells with 3 layers. The presented approach as a solution and indicator for the next generation of commercial and residential buildings can increase the potential values of solar cells to at least 70%. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-10T21:58:47Z |
dc.date.available.none.fl_str_mv |
2023-08-10T21:58:47Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Wei Liu, Yedan Shen, Pasura Aungkulanon, Mohammad Ghalandari, Binh Nguyen Le, Aníbal Alviz-Meza, Yulineth Cárdenas-Escrocia, Machine learning applications for photovoltaic system optimization in zero green energy buildings, Energy Reports, Volume 9, 2023, Pages 2787-2796, ISSN 2352-4847, https://doi.org/10.1016/j.egyr.2023.01.114 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10379 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.egyr.2023.01.114 |
dc.identifier.eissn.spa.fl_str_mv |
2352-4847 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Wei Liu, Yedan Shen, Pasura Aungkulanon, Mohammad Ghalandari, Binh Nguyen Le, Aníbal Alviz-Meza, Yulineth Cárdenas-Escrocia, Machine learning applications for photovoltaic system optimization in zero green energy buildings, Energy Reports, Volume 9, 2023, Pages 2787-2796, ISSN 2352-4847, https://doi.org/10.1016/j.egyr.2023.01.114 10.1016/j.egyr.2023.01.114 2352-4847 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/10379 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Energy Reports |
dc.relation.references.spa.fl_str_mv |
Abdou, N., Mghouchi, Y.E.L., Hamdaoui, S., Asri, N.E.L., Mouqallid, M., 2021. Multiobjective optimization of passive energy efficiency measures for net-zero energy building in Morocco. Build Environ. 204, 108141. Abualigah, L., Zitar, R.A., Almotairi, K.H., Hussein, A.M., Abd Elaziz, M., Nikoo, M.R., et al., 2022. Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: a survey of advanced machine learning and deep learning techniques. Energies 15, 578. Ahmed, A., Ge, T., Peng, J., Yan, W.-C., Tee, B.T., You, S., 2022. Assessment of the renewable energy generation towards net-zero energy buildings: a review. Energy Build. 256, 111755. Dai, H., Mamkhezri, J., Arshed, N., Javaid, A., Salem, S., Khan, Y.A., 2022. Role of energy mix in determining climate change vulnerability in G7 countries. Sustainability 14, 2161. Forootan, M.M., Larki, I., Zahedi, R., Ahmadi, A., 2022. Machine learning and deep learning in energy systems: A review. Sustainability 14, 4832. Gonzalez-Longatt, F., Sanchez, F., Singh, S.N., 2019. On the topology for a smart direct current microgrid for a cluster of zero-net energy buildings. In: Distrib. Energy Resour. Microgrids. Elsevier, pp. 455–481. Haites, E., 2018. Carbon taxes and greenhouse gas emissions trading systems: what have we learned? Clim. Policy 18, 955–966. Herceg, S., Kaaya, I., Ascencio-Vásquez, J., Fischer, M., Weiz, K.-A., Schebek, L., 2022. The influence of different degradation characteristics on the greenhouse gas emissions of silicon photovoltaics: A threefold analysis. Sustainability 14, 5843. Indira, S.S., Vaithilingam, C.A., Narasingamurthi, K., Sivasubramanian, R., Chong, K.-K., R., Saidur, 2022. Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough concentrator. Appl. Energy 320, 119294. Irfan, M., Abas, N., Saleem, M.S., 2018. Thermal performance analysis of net zero energy home for sub zero temperature areas. Case Stud. Therm. Eng. 12, 789–796. Itoo, F., Singh, S., et al., 2021. Comparison and analysis of logistic regression, naïve Bayes and KNN machine learning algorithms for credit card fraud detection. Int. J. Inf. Technol. 13, 1503–1511. Kaewunruen, S., Rungskunroch, P., Welsh, J., 2018. A digital-twin evaluation of net zero energy building for existing buildings. Sustainability 11, 159. Ko, J., Jeong, J.-W., 2021. Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material. Renew. Sustain. Energy Rev. 145, 111085. Kosonen, A., Keskisaari, A., 2020. Zero-energy log house–future concept for an energy efficient building in the Nordic conditions. Energy Build. 228, 110449. Krishna, G., Singh, R., Gehlot, A., Akram, S.V., Priyadarshi, N., Twala, B., 2022. Digital technology implementation in battery-management systems for sustainable energy storage: Review, challenges, and recommendations. Electronics 11, 2695. Kuhn, T.E., Erban, C., Heinrich, M., Eisenlohr, J., Ensslen, F., Neuhaus, D.H., 2021. Review of technological design options for building integrated photovoltaics (BIPV). Energy Build. 231, 110381. Lamb, W.F., Grubb, M., Diluiso, F., Minx, J.C., 2022. Countries with sustained greenhouse gas emissions reductions: an analysis of trends and progress by sector. Clim. Policy 22, 1–17. Li, Y., Kubicki, S., Guerriero, A., Rezgui, Y., 2019. Review of building energy performance certification schemes towards future improvement. Renew. Sustain. Energy Rev. 113, 109244. Liu, Z., Zhang, Y., Yuan, X., Liu, Y., Xu, J., Zhang, S., et al., 2021. A comprehensive study of feasibility and applicability of building integrated photovoltaic (BIPV) systems in regions with high solar irradiance. J. Clean. Prod. 307, 127240. Ma, T., Javed, M.S., 2019. Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource. Energy Conver. Manag. 182, 178–190. Maleki, A., Haghighi, A., Assad, M.El.Haj., Mahariq, I., Nazari, M.Alhuyi., 2020. A review on the approaches employed for cooling PV cells. Sol. Energy 209, 170–185. http://dx.doi.org/10.1016/j.solener.2020.08.083. Mamun, K.A., Islam, F.R., Haque, R., Chand, A.A., Prasad, K.A., Goundar, K.K., et al., 2022. Systematic modeling and analysis of on-board vehicle integrated novel hybrid renewable energy system with storage for electric vehicles. Sustainability 14, 2538. Mehrpooya, M., Raeesi, M., Pourfayaz, F., Delpisheh, M., 2021. Investigation of a hybrid solar thermochemical water-splitting hydrogen production cycle and coal-fueled molten carbonate fuel cell power plant. Sustain. Energy Technol. Assessments 47, 101458. Miao, C., Teng, K., Wang, Y., Jiang, L., 2020. Technoeconomic analysis on a hybrid power system for the UK household using renewable energy: a case study. Energies 13, 3231. Naqvi, S.A.H., Taner, T., Ozkaymak, M., Ali, H.M., 2022. Hydrogen production through alkaline electrolyzers: A techno-economic and enviro-economic analysis. Chem. Eng. Technol.. Ortiz, D., Migueis, V., Leal, V., Knox-Hayes, J., Chun, J., 2022. Analysis of renewable energy policies through decision trees. Sustainability 14, 7720. Picard, T., Hong, T., Luo, N., Lee, S.H., Sun, K., 2020. Robustness of energy performance of zero-net-energy (ZNE) homes. Energy Build. 224, 110251. Ramos, H.M., Vargas, B., Saldanha, J.R., 2022. New integrated energy solution idealization: Hybrid for renewable energy network (Hy4REN). Energies 15, 3921. Rao, L., 2021. Green building analysis and carbon emission calculation based on BIM. In: 2020 Int. Conf. Data Process. Tech. Appl. Cyber-Physical Syst., 1281–1286. Rieck, J., Taube, L., Behrendt, F., 2020. Feasibility analysis of a heat pump powered by wind turbines and PV-applications for detached houses in Germany. Renew. Energy 162, 1104–1112. Roelfsema, M., van Soest, H.L., Harmsen, M., van Vuuren, D.P., Bertram, C., den Elzen, M., et al., 2020. Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nature Commun. 11, 1–12. Romero-Perdomo, F., Carvajalino-Umaña, J.D., Moreno-Gallego, J.L., Ardila, N., González-Curbelo, M.Á., 2022. Research trends on climate change and circular economy from a knowledge mapping perspective. Sustainability 14, 521. Shahsavar, A., Arıcı, M., 2022. Effect of glass cover on the energy and exergy performance of a combined system including a building integrated photovoltaic/thermal system and a sensible rotary heat exchanger. Int. J. Energy Res. 46, 5050–5066. Shakouri, M., Ghadamian, H., Hoseinzadeh, S., Sohani, A., 2022. Multi-objective 4E analysis for a building integrated photovoltaic thermal double skin Fac¸ ade system. Sol. Energy 233, 408–420. da Silva Júnior, O.E., de Lima, J.A., Abrahão, R., de Lima, M.H.A., Santos Júnior, E.P., Coelho Junior, L.M., 2022. Solar heating with flat-plate collectors in residential buildings: A review. Energies 15, 6130. Skandalos, N., Karamanis, D., 2021. An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones. Appl. Energy 295, 117017. Sohani, A., Dehnavi, A., Sayyaadi, H., Hoseinzadeh, S., Goodarzi, E., Garcia, D.A., et al., 2022. The real-time dynamic multi-objective optimization of a building integrated photovoltaic thermal (BIPV/T) system enhanced by phase change materials. J. Energy Storage 46, 103777. Taner, T., 2019. A feasibility study of solar energy-techno economic analysis from Aksaray city. Turkey. J. Therm. Eng. 3, 1. Taner, T., Naqvi, S.A.H., Ozkaymak, M., 2019. Techno-economic analysis of a more efficient hydrogen generation system prototype: a case study of PEM electrolyzer with Cr-C coated SS304 bipolar plates. Fuel Cells 19, 19–26. Tang, X., Li, G., Zhao, X., 2021. Performance analysis of a novel hybrid electrical generation system using photovoltaic/thermal and thermally regenerative electrochemical cycle. Energy 232, 120998. Tuy, S., Lee, H.S., Chreng, K., 2022. Integrated assessment of offshore wind power potential using weather research and forecast (WRF) downscaling with sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent CO2 reduction. Renew. Sustain. Energy Rev. 163, 112501. Vilasboas, I.F., dos Santos, V.G.S.F., de Morais, V.O.B., Ribeiro Jr, A.S., da Silva, J.A.M., 2022. AERES: Thermodynamic and economic optimization software for hybrid solar–waste heat systems. Energies 15, 4284. Wang, Y., Kamari, M.L., Haghighat, S., Ngo, P.T.T., 2020. Electrical and thermal analyses of solar PV module by considering realistic working conditions. J. Therm. Anal. Calorim http://dx.doi.org/10.1007/s10973-020-09752-2. Wu, W., Skye, H.M., 2021. Residential net-zero energy buildings: Review and perspective. Renew. Sustain. Energy Rev. 142, 110859. Yang, C.-H., Chen, B.-H., Wu, C.-H., Chen, K.-C., Chuang, L.-Y., 2022a. Deep learning for forecasting electricity demand in Taiwan. Mathematics 10, 2547. Yang, Y., Javanroodi, K., Nik, V.M., 2022b. Climate change and renewable energy generation in Europe—Long-term impact assessment on solar and wind energy using high-resolution future climate data and considering climate uncertainties. Energies 15, 302. Zhang, J., Li, H., Chen, D., Xu, B., Mahmud, M.A., 2021. Flexibility assessment of a hybrid power system: Hydroelectric units in balancing the injection of wind power. Renew. Energy 171, 1313–1326. Zhang, S., Li, J., Li, Y., 2022. Reachable distance function for KNN classification. IEEE Trans. Knowl. Data Eng.. Zhou, Z., Feng, L., Zhang, S., Wang, C., Chen, G., Du, T., et al., 2016. The operational performance of ‘‘net zero energy building’’: A study in China. Appl. Energy 177, 716–728. |
dc.relation.citationendpage.spa.fl_str_mv |
2796 |
dc.relation.citationstartpage.spa.fl_str_mv |
2787 |
dc.relation.citationvolume.spa.fl_str_mv |
9 |
dc.rights.none.fl_str_mv |
© 2023 The Authors. Published by Elsevier Ltd. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2023 The Authors. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd. |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2352484723001221 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c742d002-060a-450f-8be8-64bbe7761d17/download https://repositorio.cuc.edu.co/bitstreams/2e95884d-094e-4999-952f-5f6f8c27f772/download https://repositorio.cuc.edu.co/bitstreams/8263f32c-089c-4bc6-b6f5-eb13c16ae30d/download https://repositorio.cuc.edu.co/bitstreams/9c39f9a2-4d6e-45cd-a063-2d1d9eba5527/download |
bitstream.checksum.fl_str_mv |
369c63c62009c00fb8e53a914c2eae13 2f9959eaf5b71fae44bbf9ec84150c7a 7597cb78344f8b8653db9f8cb752d85e bafc80b568f3f5a0af35bb931b8b5347 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166871520641024 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 The Authors. Published by Elsevier Ltd.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Liu, WeiShen, YedanAungkulanon, PasuraGhalandari, MohammadLe, Binh NguyenAlviz Meza, AnibalCardenas Escorcia, Yulineth2023-08-10T21:58:47Z2023-08-10T21:58:47Z2023Wei Liu, Yedan Shen, Pasura Aungkulanon, Mohammad Ghalandari, Binh Nguyen Le, Aníbal Alviz-Meza, Yulineth Cárdenas-Escrocia, Machine learning applications for photovoltaic system optimization in zero green energy buildings, Energy Reports, Volume 9, 2023, Pages 2787-2796, ISSN 2352-4847, https://doi.org/10.1016/j.egyr.2023.01.114https://hdl.handle.net/11323/1037910.1016/j.egyr.2023.01.1142352-4847Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper, the energy supply of a zero-energy building with 220 square meters is considered using optimized nanocomposite solar panels with respect to maximum efficiency. An optimized hybrid machine learning method plays a key role in presenting solar panel modeling with over 0.99% accuracy. Predicting the properties of the nanomaterial solar cell in four different seasons is performed by efficient support vector machines (SVM), and k-nearest neighbors (KNN) machine learning algorithms. In addition, the KNN algorithm is optimized by the Particle Swarm Optimization (PSO) method to improve the capabilities of KNN and reveal the best performance criteria for the photovoltaic modeling characteristics. The parameters of the nanocomposite cells are optimized using the proposed novel Multidisciplinary Optimization Method (MDO) to increase the efficiency of the solar panel by up to 170%. Optimization of solar cell performance with nanocomposite material under energy consumption constraints is carried out to propose the best construction of cells with 3 layers. The presented approach as a solution and indicator for the next generation of commercial and residential buildings can increase the potential values of solar cells to at least 70%.10 páginasapplication/pdfengElsevier Ltd.United Kingdomhttps://www.sciencedirect.com/science/article/pii/S2352484723001221Machine learning applications for photovoltaic system optimization in zero green energy buildingsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Energy ReportsAbdou, N., Mghouchi, Y.E.L., Hamdaoui, S., Asri, N.E.L., Mouqallid, M., 2021. Multiobjective optimization of passive energy efficiency measures for net-zero energy building in Morocco. Build Environ. 204, 108141.Abualigah, L., Zitar, R.A., Almotairi, K.H., Hussein, A.M., Abd Elaziz, M., Nikoo, M.R., et al., 2022. Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: a survey of advanced machine learning and deep learning techniques. Energies 15, 578.Ahmed, A., Ge, T., Peng, J., Yan, W.-C., Tee, B.T., You, S., 2022. Assessment of the renewable energy generation towards net-zero energy buildings: a review. Energy Build. 256, 111755.Dai, H., Mamkhezri, J., Arshed, N., Javaid, A., Salem, S., Khan, Y.A., 2022. Role of energy mix in determining climate change vulnerability in G7 countries. Sustainability 14, 2161.Forootan, M.M., Larki, I., Zahedi, R., Ahmadi, A., 2022. Machine learning and deep learning in energy systems: A review. Sustainability 14, 4832.Gonzalez-Longatt, F., Sanchez, F., Singh, S.N., 2019. On the topology for a smart direct current microgrid for a cluster of zero-net energy buildings. In: Distrib. Energy Resour. Microgrids. Elsevier, pp. 455–481.Haites, E., 2018. Carbon taxes and greenhouse gas emissions trading systems: what have we learned? Clim. Policy 18, 955–966.Herceg, S., Kaaya, I., Ascencio-Vásquez, J., Fischer, M., Weiz, K.-A., Schebek, L., 2022. The influence of different degradation characteristics on the greenhouse gas emissions of silicon photovoltaics: A threefold analysis. Sustainability 14, 5843.Indira, S.S., Vaithilingam, C.A., Narasingamurthi, K., Sivasubramanian, R., Chong, K.-K., R., Saidur, 2022. Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough concentrator. Appl. Energy 320, 119294.Irfan, M., Abas, N., Saleem, M.S., 2018. Thermal performance analysis of net zero energy home for sub zero temperature areas. Case Stud. Therm. Eng. 12, 789–796.Itoo, F., Singh, S., et al., 2021. Comparison and analysis of logistic regression, naïve Bayes and KNN machine learning algorithms for credit card fraud detection. Int. J. Inf. Technol. 13, 1503–1511.Kaewunruen, S., Rungskunroch, P., Welsh, J., 2018. A digital-twin evaluation of net zero energy building for existing buildings. Sustainability 11, 159.Ko, J., Jeong, J.-W., 2021. Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material. Renew. Sustain. Energy Rev. 145, 111085.Kosonen, A., Keskisaari, A., 2020. Zero-energy log house–future concept for an energy efficient building in the Nordic conditions. Energy Build. 228, 110449.Krishna, G., Singh, R., Gehlot, A., Akram, S.V., Priyadarshi, N., Twala, B., 2022. Digital technology implementation in battery-management systems for sustainable energy storage: Review, challenges, and recommendations. Electronics 11, 2695.Kuhn, T.E., Erban, C., Heinrich, M., Eisenlohr, J., Ensslen, F., Neuhaus, D.H., 2021. Review of technological design options for building integrated photovoltaics (BIPV). Energy Build. 231, 110381.Lamb, W.F., Grubb, M., Diluiso, F., Minx, J.C., 2022. Countries with sustained greenhouse gas emissions reductions: an analysis of trends and progress by sector. Clim. Policy 22, 1–17.Li, Y., Kubicki, S., Guerriero, A., Rezgui, Y., 2019. Review of building energy performance certification schemes towards future improvement. Renew. Sustain. Energy Rev. 113, 109244.Liu, Z., Zhang, Y., Yuan, X., Liu, Y., Xu, J., Zhang, S., et al., 2021. A comprehensive study of feasibility and applicability of building integrated photovoltaic (BIPV) systems in regions with high solar irradiance. J. Clean. Prod. 307, 127240.Ma, T., Javed, M.S., 2019. Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource. Energy Conver. Manag. 182, 178–190.Maleki, A., Haghighi, A., Assad, M.El.Haj., Mahariq, I., Nazari, M.Alhuyi., 2020. A review on the approaches employed for cooling PV cells. Sol. Energy 209, 170–185. http://dx.doi.org/10.1016/j.solener.2020.08.083.Mamun, K.A., Islam, F.R., Haque, R., Chand, A.A., Prasad, K.A., Goundar, K.K., et al., 2022. Systematic modeling and analysis of on-board vehicle integrated novel hybrid renewable energy system with storage for electric vehicles. Sustainability 14, 2538.Mehrpooya, M., Raeesi, M., Pourfayaz, F., Delpisheh, M., 2021. Investigation of a hybrid solar thermochemical water-splitting hydrogen production cycle and coal-fueled molten carbonate fuel cell power plant. Sustain. Energy Technol. Assessments 47, 101458.Miao, C., Teng, K., Wang, Y., Jiang, L., 2020. Technoeconomic analysis on a hybrid power system for the UK household using renewable energy: a case study. Energies 13, 3231.Naqvi, S.A.H., Taner, T., Ozkaymak, M., Ali, H.M., 2022. Hydrogen production through alkaline electrolyzers: A techno-economic and enviro-economic analysis. Chem. Eng. Technol..Ortiz, D., Migueis, V., Leal, V., Knox-Hayes, J., Chun, J., 2022. Analysis of renewable energy policies through decision trees. Sustainability 14, 7720.Picard, T., Hong, T., Luo, N., Lee, S.H., Sun, K., 2020. Robustness of energy performance of zero-net-energy (ZNE) homes. Energy Build. 224, 110251.Ramos, H.M., Vargas, B., Saldanha, J.R., 2022. New integrated energy solution idealization: Hybrid for renewable energy network (Hy4REN). Energies 15, 3921.Rao, L., 2021. Green building analysis and carbon emission calculation based on BIM. In: 2020 Int. Conf. Data Process. Tech. Appl. Cyber-Physical Syst., 1281–1286.Rieck, J., Taube, L., Behrendt, F., 2020. Feasibility analysis of a heat pump powered by wind turbines and PV-applications for detached houses in Germany. Renew. Energy 162, 1104–1112.Roelfsema, M., van Soest, H.L., Harmsen, M., van Vuuren, D.P., Bertram, C., den Elzen, M., et al., 2020. Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nature Commun. 11, 1–12.Romero-Perdomo, F., Carvajalino-Umaña, J.D., Moreno-Gallego, J.L., Ardila, N., González-Curbelo, M.Á., 2022. Research trends on climate change and circular economy from a knowledge mapping perspective. Sustainability 14, 521.Shahsavar, A., Arıcı, M., 2022. Effect of glass cover on the energy and exergy performance of a combined system including a building integrated photovoltaic/thermal system and a sensible rotary heat exchanger. Int. J. Energy Res. 46, 5050–5066.Shakouri, M., Ghadamian, H., Hoseinzadeh, S., Sohani, A., 2022. Multi-objective 4E analysis for a building integrated photovoltaic thermal double skin Fac¸ ade system. Sol. Energy 233, 408–420.da Silva Júnior, O.E., de Lima, J.A., Abrahão, R., de Lima, M.H.A., Santos Júnior, E.P., Coelho Junior, L.M., 2022. Solar heating with flat-plate collectors in residential buildings: A review. Energies 15, 6130.Skandalos, N., Karamanis, D., 2021. An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones. Appl. Energy 295, 117017.Sohani, A., Dehnavi, A., Sayyaadi, H., Hoseinzadeh, S., Goodarzi, E., Garcia, D.A., et al., 2022. The real-time dynamic multi-objective optimization of a building integrated photovoltaic thermal (BIPV/T) system enhanced by phase change materials. J. Energy Storage 46, 103777.Taner, T., 2019. A feasibility study of solar energy-techno economic analysis from Aksaray city. Turkey. J. Therm. Eng. 3, 1.Taner, T., Naqvi, S.A.H., Ozkaymak, M., 2019. Techno-economic analysis of a more efficient hydrogen generation system prototype: a case study of PEM electrolyzer with Cr-C coated SS304 bipolar plates. Fuel Cells 19, 19–26.Tang, X., Li, G., Zhao, X., 2021. Performance analysis of a novel hybrid electrical generation system using photovoltaic/thermal and thermally regenerative electrochemical cycle. Energy 232, 120998.Tuy, S., Lee, H.S., Chreng, K., 2022. Integrated assessment of offshore wind power potential using weather research and forecast (WRF) downscaling with sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent CO2 reduction. Renew. Sustain. Energy Rev. 163, 112501.Vilasboas, I.F., dos Santos, V.G.S.F., de Morais, V.O.B., Ribeiro Jr, A.S., da Silva, J.A.M., 2022. AERES: Thermodynamic and economic optimization software for hybrid solar–waste heat systems. Energies 15, 4284.Wang, Y., Kamari, M.L., Haghighat, S., Ngo, P.T.T., 2020. Electrical and thermal analyses of solar PV module by considering realistic working conditions. J. Therm. Anal. Calorim http://dx.doi.org/10.1007/s10973-020-09752-2.Wu, W., Skye, H.M., 2021. Residential net-zero energy buildings: Review and perspective. Renew. Sustain. Energy Rev. 142, 110859.Yang, C.-H., Chen, B.-H., Wu, C.-H., Chen, K.-C., Chuang, L.-Y., 2022a. Deep learning for forecasting electricity demand in Taiwan. Mathematics 10, 2547.Yang, Y., Javanroodi, K., Nik, V.M., 2022b. Climate change and renewable energy generation in Europe—Long-term impact assessment on solar and wind energy using high-resolution future climate data and considering climate uncertainties. Energies 15, 302.Zhang, J., Li, H., Chen, D., Xu, B., Mahmud, M.A., 2021. Flexibility assessment of a hybrid power system: Hydroelectric units in balancing the injection of wind power. Renew. Energy 171, 1313–1326.Zhang, S., Li, J., Li, Y., 2022. Reachable distance function for KNN classification. IEEE Trans. Knowl. Data Eng..Zhou, Z., Feng, L., Zhang, S., Wang, C., Chen, G., Du, T., et al., 2016. The operational performance of ‘‘net zero energy building’’: A study in China. Appl. Energy 177, 716–728.279627879Zero energy buildingsMachine learningOptimizationPhotovoltaic systemsSolar panelNano-composite materialPublicationORIGINALMachine learning applications for photovoltaic system optimization in zero green energy buildings.pdfMachine learning applications for photovoltaic system optimization in zero green energy buildings.pdfArtículoapplication/pdf2152531https://repositorio.cuc.edu.co/bitstreams/c742d002-060a-450f-8be8-64bbe7761d17/download369c63c62009c00fb8e53a914c2eae13MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/2e95884d-094e-4999-952f-5f6f8c27f772/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTMachine learning applications for photovoltaic system optimization in zero green energy buildings.pdf.txtMachine learning applications for photovoltaic system optimization in zero green energy buildings.pdf.txtExtracted texttext/plain44113https://repositorio.cuc.edu.co/bitstreams/8263f32c-089c-4bc6-b6f5-eb13c16ae30d/download7597cb78344f8b8653db9f8cb752d85eMD53THUMBNAILMachine learning applications for photovoltaic system optimization in zero green energy buildings.pdf.jpgMachine learning applications for photovoltaic system optimization in zero green energy buildings.pdf.jpgGenerated Thumbnailimage/jpeg16519https://repositorio.cuc.edu.co/bitstreams/9c39f9a2-4d6e-45cd-a063-2d1d9eba5527/downloadbafc80b568f3f5a0af35bb931b8b5347MD5411323/10379oai:repositorio.cuc.edu.co:11323/103792024-09-17 14:20:15.691https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 The Authors. Published by Elsevier Ltd.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |