Machine learning applications for photovoltaic system optimization in zero green energy buildings

In this paper, the energy supply of a zero-energy building with 220 square meters is considered using optimized nanocomposite solar panels with respect to maximum efficiency. An optimized hybrid machine learning method plays a key role in presenting solar panel modeling with over 0.99% accuracy. Pre...

Full description

Autores:
Liu, Wei
Shen, Yedan
Aungkulanon, Pasura
Ghalandari, Mohammad
Le, Binh Nguyen
Alviz Meza, Anibal
Cardenas Escorcia, Yulineth
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10379
Acceso en línea:
https://hdl.handle.net/11323/10379
https://repositorio.cuc.edu.co/
Palabra clave:
Zero energy buildings
Machine learning
Optimization
Photovoltaic systems
Solar panel
Nano-composite material
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)