Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii

Nowadays, enzymatic synthesis of nucleotides is an efficient and sustainable alternative to chemical methodologies. In this regard, after the biochemical characterization of wild-type and mutant uracil phosphoribosyltransferases from Toxoplasma gondii (TgUPRT, TgUPRT2, and TgUPRT3), TgUPRT2 was sele...

Full description

Autores:
Acosta, Javier
Nguyen, Kim
C. Spitale, Robert
Fernández-Lucas, Jesús
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8625
Acceso en línea:
https://hdl.handle.net/11323/8625
https://doi.org/10.1016/j.biortech.2021.125649
https://repositorio.cuc.edu.co/
Palabra clave:
Nucleoside-5′-monophosphates
Phosphoribosyltransferases
Structure-guided immobilization
Rights
embargoedAccess
License
CC0 1.0 Universal
id RCUC2_33ae1b624983c219222429c388faf4ca
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8625
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii
title Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii
spellingShingle Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii
Nucleoside-5′-monophosphates
Phosphoribosyltransferases
Structure-guided immobilization
title_short Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii
title_full Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii
title_fullStr Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii
title_full_unstemmed Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii
title_sort Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii
dc.creator.fl_str_mv Acosta, Javier
Nguyen, Kim
C. Spitale, Robert
Fernández-Lucas, Jesús
dc.contributor.author.spa.fl_str_mv Acosta, Javier
Nguyen, Kim
C. Spitale, Robert
Fernández-Lucas, Jesús
dc.subject.spa.fl_str_mv Nucleoside-5′-monophosphates
Phosphoribosyltransferases
Structure-guided immobilization
topic Nucleoside-5′-monophosphates
Phosphoribosyltransferases
Structure-guided immobilization
description Nowadays, enzymatic synthesis of nucleotides is an efficient and sustainable alternative to chemical methodologies. In this regard, after the biochemical characterization of wild-type and mutant uracil phosphoribosyltransferases from Toxoplasma gondii (TgUPRT, TgUPRT2, and TgUPRT3), TgUPRT2 was selected as the optimal candidate (69.5 IU mg−1, UMP synthesis) for structure-guided immobilization onto Ni2+ chelate (MNiUPRT2) and onto glutaraldehyde-activated microparticles (MGlUPRT2). Among resulting derivatives, MNiUPRT23 (6127 IU g−1biocat; 92% retained activity; 3–5 fold enhanced stability at 50–60 °C) and MGlUPRT2N (3711 IU g−1biocat; 27% retained activity; 8–20 fold enhanced stability at 50–60 °C) displayed the best operability. Moreover, the enzymatic synthesis of different pyrimidine NMPs was performed. Finally, the reusability of both derivatives in 5-FUMP synthesis (MNiUPRT23, 80% retained activity after 7 cycles, 5 min; MGlUPRT2N, 70% retained activity after 10 cycles, 20 min) was carried out at short times. © 2021 Elsevier Ltd
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-03T17:01:58Z
dc.date.available.none.fl_str_mv 2021-09-03T17:01:58Z
dc.date.issued.none.fl_str_mv 2021
dc.date.embargoEnd.none.fl_str_mv 2023-07-21
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 09608524
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8625
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.biortech.2021.125649
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 09608524
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8625
https://doi.org/10.1016/j.biortech.2021.125649
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Acosta, J., Del Arco, J., Martinez-Pascual, S., Clemente-Suarez, ´ V.J., Fernandez-Lucas, ´ J., 2018. One-pot multi-enzymatic production of purine derivatives with application in pharmaceutical and food industry. Catalysts 8, 9. https://doi.org/10.3390/ catal8010009.
Acosta, J., Del Arco, J., Pisabarro, V., Gago, F., Fernandez-Lucas, ´ J., 2020a. Nribosyltransferase from Archaeoglobus veneficus: a novel halotolerant and thermostable biocatalyst for the synthesis of purine ribonucleoside analogs. Front. Bioeng. Biotechnol. 8, 593. https://doi.org/10.3389/fbioe.2020.00593.
Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677.
Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677.
Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677.
Al-Qodah, Z., Al-Shannag, M., Al-Bosoul, M., Penchev, I., Al-Ahmadi, H., Al-Qodah, K., 2018. On the performance of immobilized cell bioreactors utilizing a magnetic field. Rev. Chem. Eng. 34, 385–408. https://doi.org/10.1515/revce-2016-0059.
Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A., ´ Rodrigues, R.C., FernandezLafuente, R., 2013. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols toopportunities in tuning enzyme properties. Biomacromolecules 14 (8), 2433–2462. https://doi.org/10.1021/bm400762h.
Barbosa, O., Ortiz, C., Berenguer-Murcia, A., ´ Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2015. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33 (5), 435–456. https://doi. org/10.1016/j.biotechadv.2015.03.006.
Bedade, D.K., Muley, A.B., Singhal, R.S., 2019. Magnetic cross-linked enzyme aggregates of acrylamidase from cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresour. Technol. 272, 137–145. https:// doi.org/10.1016/j.biortech.2018.10.015.
Arco, J.D., Fernandez-Lucas, J., 2018. Purine and pyrimidine phosphoribosyltransferases: a versatile tool for enzymatic synthesis of nucleoside-5’- monophosphates. Curr. Pharm. Des. 23 (45), 6898–6912. https://doi.org/10.2174/ 1381612823666171017165707
Del Arco, J., Cejudo-Sanches, J., Esteban, I., Clemente-Su´ arez, V.J., Hormigo, D., Perona, A., Fernandez-Lucas, ´ J., 2017. Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst. Food Chem. 237, 605–611. https://doi.org/10.1016/j. foodchem.2017.05.136.
Del Arco, J., Martinez, M., Donday, M., Clemente-Suarez, V.J., Fernandez-Lucas, ´ J., 2018a. Cloning, expression and biochemical characterization of xanthine and adenine phosphoribosyltransferases from thermus thermophilus HB8. Biocatal. Biotransform. 36 (3), 216–223. https://doi.org/10.1080/10242422.2017.1313837.
Del Arco, J., Acosta, J., Pereira, H.M., Perona, A., Lokanath, N.K., Kunishima, N., Fern´ andez-Lucas, J., 2018b. Enzymatic production of non-natural nucleoside-5’- monophosphates by a novel thermostable uracil phosphoribosyltransferase. ChemCatChem 10, 439–448. https://doi.org/10.1002/cctc.201701223.
Del Arco, J., Martínez-Pascual, S., Clemente-Su´ arez, V.J., Corral, O.J., Jordaan, J., Hormigo, D., Perona, A., Fern´ andez-Lucas, J., 2018c. One-pot, one-step production of dietary nucleotides by magnetic biocatalysts. Catalysts 8, 184. https://doi.org/ 10.3390/catal8050184.
Del Arco, J., Jordaan, J., Moral-Dard´e, V., Fernandez-Lucas, ´ J., 2019a. Sustainable production of nucleoside analogues by a high-efficient purine 2‘- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles. Bioresour. Technol. 289, 121772. https://doi.org/10.1016/j.biortech.2019.121772.
Del Arco, J., P´erez, E., Naitow, H., Matsuura, Y., Kunishima, N., Fernandez-Lucas, ´ J., 2019b. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′ -monophospate analogues. Bioresour. Technol. 276, 244–252. https://doi.org/10.1016/j.biortech.2018.12.120.
Del Arco, J., Galindo, J., Clemente-Su´ arez, V.J., Corrales, A., Fern´ andez-Lucas, J., 2020. Sustainable synthesis of uridine-5′ -monophosphate analoguesues by immobilized uracil phosphoribosyltransferase from thermus thermophilus. Biochim. Biophys. Acta Proteins Proteom. 1868, 140251 https://doi.org/10.1016/j.bbapap.2019.07.004.
Del Arco, J., Alcantara, ´ A.R., Fernandez-Lafuente, ´ R., Fernandez-Lucas, ´ J., 2021a. Magnetic micro-macro biocatalysts applied to industrial bioprocesses. Bioresour. Technol. 322, 124547. https://doi.org/10.1016/j.biortech.2020.124547.
Del Arco, J., Acosta, J., Fern´ andez-Lucas, J., 2021b. New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2’- deoxyribosyltransferases. Biotechnol. Adv. 107701. https://doi.org/10.1016/j. biotechadv.2021.107701.
DeLano, W.L., 2002. The PyMOL Molecular Graphics System. Delano Scientific, San Carlos.
Fateev, I.V., Sinitsina, E.V., Bikanasova, A.U., Kostromina, M.A., Tuzova, E.S., Esipova, L. V., Muravyova, T.I., Kayushin, A.L., Konstantinova, I.D., Esipov, R.S., 2018. Thermophilic phosphoribosyltransferases thermus thermophilus HB27 in nucleotide synthesis. Beilstein J. Org. Chem. 14, 3098–3105. https://doi.org/10.3762/ bjoc.14.289.
Fernandez-Lafuente, R., 2009. Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb. Technol. 45 (6-7), 405–418. https://doi.org/ 10.1016/j.enzmictec.2009.08.009. Fern´ andez-Lucas, J., Harris, R., Mata-Ca
Fern´ andez-Lucas, J., Harris, R., Mata-Casar, I., Heras, A., de la Mata, I., Arroyo, M., 2013. Magnetic chitosan beads for covalent immobilization of nucleoside 2’- deoxyribosyltransferase: application in nucleoside analogues synthesis. J. Ind. Microbiol. Biotechnol. 40, 955–966. https://doi.org/10.1007/s10295-013-1304-4.
Fernandez-Lucas, J., 2015. Multienzymatic synthesis of nucleic acid derivatives: a general perspective. Appl. Microbiol. Biotechnol. 99 (11), 4615–4627. https://doi. org/10.1007/s00253-015-6642-x.
Fern´andez-Lucas, J. (Ed.), 2019. Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany https://doi. org/10.1002/9783527812103.
Frisch, J., Marˇsi´c, T., Loderer, C., 2021. A novel one-pot enzyme cascade for the biosynthesis of cladribine triphosphate. Biomolecules 11, 346. https://doi.org/ 10.3390/biom11030346.
Gill, S.C., von Hippel, P.H., 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182 (2), 319–326. https://doi.org/ 10.1016/0003-2697(89)90602-7.
Gudino, ˜ E.D., Santillan, ´ J.Y., Iglesias, L.E., Iribarren, A.M., 2018. An enzymatic alternative for the synthesis of nucleoside 5′ -monophosphates. Enzyme Microb. Technol. 111, 1–6. https://doi.org/10.1016/j.enzmictec.2017.12.004.
Iglesias, L.E., Lewkowicz, E.S., Medici, R., Bianchi, P., Iribarren, A.M., 2015. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs. Biotechnol. Adv. 33 (5), 412–434. https://doi.org/10.1016/j.biotechadv.2015.03.009.
Jensen, H.K., Mikkelsen, N., Neuhard, J., 1997. Recombinant uracil phosphoribosyltransferase from the thermophile bacillus caldolyticus: expression, purification, and partial characterization. Protein Expr. Purif 10 (3), 356–364. https://doi.org/10.1006/prep.1997.0755.
Liu, Z.-Q., Zhang, L., Sun, L.-H., Li, X.-J., Wan, N.-W., Zheng, Y.-G., 2012. Enzymatic production of 5′ -inosinic acid by a newly synthesised acid phosphatase/ phosphotransferase. Food Chem. 134 (2), 948–956. https://doi.org/10.1016/j. foodchem.2012.02.213.
Martins, S.L., Albuquerque, B.F., Nunes, M.A., Ribeiro, M.H., 2018. Exploring magnetic and imprinted cross-linked enzyme aggregates of rhamnopyranosidase in microbioreactors. Bioresour. Technol. 249, 704–712. https://doi.org/10.1016/j. biortech.2017.10.078.
Ngo, T.P., Li, A., Tiew, K.W., Li, Z., 2013. Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour. Technol. 145, 233–239. https://doi.org/10.1016/j.biortech.2012.12.053.
Nguyen, K., Kubota, M., Del Arco, J., Feng, C., Singha, M., Beasley, S., Sakr, J., Gandhi, S., Blurton-Jones, M., Fern´ andez Lucas, J., Spitale, R.A., 2020. Bump-hole strategy for increased stringency of cell-specific metabolic labeling of RNA. ACS Chem. Biol. 15, 3099–3105. https://doi.org/10.1021/acschembio.0c00755.
P´erez, E., Sanchez-Murcia, ´ P.A., Jordaan, J., Blanco, M.D., Mancheno, ˜ J.M., Gago, F., Fernandez-Lucas, ´ J., 2018. Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-deoxyribosyltransferase from trypanosoma brucei. ChemCatChem 10 (19), 4406–4416. https://doi.org/10.1002/ cctc.201800775.
Rinaldi, F., Fernandez-Lucas, ´ J., de la Fuente, D., Zheng, C., Bavaro, T., Peters, B., Massolini, G., Annunziata, F., Conti, P., de la Mata, I., Terreni, M., Calleri, E., 2020. Immobilized enzyme reactors based on nucleoside phosphorylases and 2’- deoxyribosyltransferase for the in-flow synthesis of pharmaceutically relevant nucleoside analogues. Bioresour. Technol. 307, 123258. https://doi.org/10.1016/j. biortech.2020.123258.
Roe, D.R., Cheatham III, T.E., 2013. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095. https://doi.org/10.1021/ct400341p.
Serra, I., Conti, S., Piˇskur, J., Clausen, A.R., Munch-Petersen, B., Terreni, M., Ubiali, D., 2014. Immobilized Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) as a high performing biocatalyst for the synthesis of purine arabinonucleotides. Adv. Synth. Catal. 356 (2-3), 563–570. https://doi.org/10.1002/adsc.201300649.
Scism, R.A., Stec, D.F., Bachmann, B.O., 2007. Synthesis of nucleotide analogues by a promiscuous phosphoribosyltransferase. Org. Lett. 9 (21), 4179–4182. https://doi. org/10.1021/ol701680210.1021/ol7016802.s002.
Schumacher, M.A., Carter, D., Scott, D.M., Roos, D.S., Ullman, B., Brennan, R.G., 1998. Crystal structures of toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic basis of pyrimidine discrimination and prodrug binding. EMBO J. 17, 3219–3232. https://doi.org/10.1093/emboj/17.12.3219.
Schumacher, M.A., Bashor, C.J., Song, M.H., Otsu, K., Zhu, S., Parry, R.J., Ullman, B., Brennan, R.G., 2002. The structural mechanism of GTP stabilized oligomerization and catalytic activation of the Toxoplasma gondii uracil phosphoribosyltransferase. Proc. Natl. Acad. Sci. 99 (1), 78–83. https://doi.org/10.1073/pnas.012399599.
Slagman, S., Fessner, W.-D., 2021. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem. Soc. Rev. 50 (3), 1968–2009. https://doi.org/ 10.1039/D0CS00763C.
Valino, A.L., Iribarren, A.M., Lewkowicz, E., 2015. New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents. J. Mol. Catal. B. Enzym. 114, 58–64. https://doi.org/10.1016/j. molcatb.2014.12.004.
Walker, R.C., Crowley, M.F., Case, D.A., 2008. The implementation of a fast and accurate QM/MM potential method in Amber. J. Comput. Chem. 29 (7), 1019–1031. https:// doi.org/10.1002/jcc.20857.
Wu, S., Snajdrova, R., Moore, J.C., Baldenius, K., Bornscheuer, U.T., 2021. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60 (1), 88–119. https://doi.org/10.1002/anie.202006648.
Yata, V.K., Sen, K., Kumar, M.V.S., Ghosh, S.S., 2012. Interaction studies of E. coli uracil phosphoribosyltransferase with 5-fluorouracil for potent anti cancer activity. Med. Chem. Res. 21 (7), 1149–1155. https://doi.org/10.1007/s00044-011-9627-z.
Yoshikawa, M., Kato, T., Takenishi, T., 1969. Studies of phosphorylation. III. selective phosphorylation of unprotected nucleosides. Bull. Chem. Soc. Jpn. 42 (12), 3505–3508. https://doi.org/10.1246/bcsj.42.3505.
Zou, H., Cai, G., Cai, W., Li, H., Gu, Y., Park, Y., Meng, F., 2008. Extraction and DNA digestion of 5′ -phosphodiesterase from malt root. Tsinghua Sci. Technol. 13 (4), 480–484. https://doi.org/10.1016/S1007-0214(08)70077-4.
Zou, Z., Ding, Q., Ou, L., Yan, B., 2013. Efficient production of deoxynucleoside-5′ - monophosphates using deoxynucleoside kinase coupled with a GTP-regeneration system. Appl. Microbiol. Biotechnol. 97 (21), 9389–9395. https://doi.org/10.1007/ s00253-013-5173-6.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Bioresource Technology
dc.source.spa.fl_str_mv Bioresource Technology
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0960852421009901
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/95adbd38-0e36-4ad5-afaf-52d747434895/download
https://repositorio.cuc.edu.co/bitstreams/ab400bae-5814-4188-8509-764ed7b9cbdd/download
https://repositorio.cuc.edu.co/bitstreams/8cebe51b-dba6-4c56-9673-bfec30d4457b/download
https://repositorio.cuc.edu.co/bitstreams/39e587d8-3a84-481b-a27e-f34424adfb24/download
https://repositorio.cuc.edu.co/bitstreams/462feeb4-b673-4d7e-b823-a4ad47d77107/download
bitstream.checksum.fl_str_mv 06bbc2bd63f9d75af986e43ea420ae4e
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
9137cd7d65de08329e58b673c7684a5d
e7c105a38300d7f121e43db33f2322f5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760694038626304
spelling Acosta, JavierNguyen, KimC. Spitale, RobertFernández-Lucas, Jesús2021-09-03T17:01:58Z2021-09-03T17:01:58Z20212023-07-2109608524https://hdl.handle.net/11323/8625https://doi.org/10.1016/j.biortech.2021.125649Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Nowadays, enzymatic synthesis of nucleotides is an efficient and sustainable alternative to chemical methodologies. In this regard, after the biochemical characterization of wild-type and mutant uracil phosphoribosyltransferases from Toxoplasma gondii (TgUPRT, TgUPRT2, and TgUPRT3), TgUPRT2 was selected as the optimal candidate (69.5 IU mg−1, UMP synthesis) for structure-guided immobilization onto Ni2+ chelate (MNiUPRT2) and onto glutaraldehyde-activated microparticles (MGlUPRT2). Among resulting derivatives, MNiUPRT23 (6127 IU g−1biocat; 92% retained activity; 3–5 fold enhanced stability at 50–60 °C) and MGlUPRT2N (3711 IU g−1biocat; 27% retained activity; 8–20 fold enhanced stability at 50–60 °C) displayed the best operability. Moreover, the enzymatic synthesis of different pyrimidine NMPs was performed. Finally, the reusability of both derivatives in 5-FUMP synthesis (MNiUPRT23, 80% retained activity after 7 cycles, 5 min; MGlUPRT2N, 70% retained activity after 10 cycles, 20 min) was carried out at short times. © 2021 Elsevier LtdAcosta, Javier-will be generated-orcid-0000-0002-7710-5703-600Nguyen, KimC. Spitale, RobertFernández-Lucas, Jesús-will be generated-orcid-0000-0001-7045-8306-600application/pdfengBioresource TechnologyCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfBioresource Technologyhttps://www.sciencedirect.com/science/article/pii/S0960852421009901Nucleoside-5′-monophosphatesPhosphoribosyltransferasesStructure-guided immobilizationTaylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondiiArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAcosta, J., Del Arco, J., Martinez-Pascual, S., Clemente-Suarez, ´ V.J., Fernandez-Lucas, ´ J., 2018. One-pot multi-enzymatic production of purine derivatives with application in pharmaceutical and food industry. Catalysts 8, 9. https://doi.org/10.3390/ catal8010009.Acosta, J., Del Arco, J., Pisabarro, V., Gago, F., Fernandez-Lucas, ´ J., 2020a. Nribosyltransferase from Archaeoglobus veneficus: a novel halotolerant and thermostable biocatalyst for the synthesis of purine ribonucleoside analogs. Front. Bioeng. Biotechnol. 8, 593. https://doi.org/10.3389/fbioe.2020.00593.Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677.Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677.Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677.Al-Qodah, Z., Al-Shannag, M., Al-Bosoul, M., Penchev, I., Al-Ahmadi, H., Al-Qodah, K., 2018. On the performance of immobilized cell bioreactors utilizing a magnetic field. Rev. Chem. Eng. 34, 385–408. https://doi.org/10.1515/revce-2016-0059.Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A., ´ Rodrigues, R.C., FernandezLafuente, R., 2013. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols toopportunities in tuning enzyme properties. Biomacromolecules 14 (8), 2433–2462. https://doi.org/10.1021/bm400762h.Barbosa, O., Ortiz, C., Berenguer-Murcia, A., ´ Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2015. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33 (5), 435–456. https://doi. org/10.1016/j.biotechadv.2015.03.006.Bedade, D.K., Muley, A.B., Singhal, R.S., 2019. Magnetic cross-linked enzyme aggregates of acrylamidase from cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresour. Technol. 272, 137–145. https:// doi.org/10.1016/j.biortech.2018.10.015.Arco, J.D., Fernandez-Lucas, J., 2018. Purine and pyrimidine phosphoribosyltransferases: a versatile tool for enzymatic synthesis of nucleoside-5’- monophosphates. Curr. Pharm. Des. 23 (45), 6898–6912. https://doi.org/10.2174/ 1381612823666171017165707Del Arco, J., Cejudo-Sanches, J., Esteban, I., Clemente-Su´ arez, V.J., Hormigo, D., Perona, A., Fernandez-Lucas, ´ J., 2017. Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst. Food Chem. 237, 605–611. https://doi.org/10.1016/j. foodchem.2017.05.136.Del Arco, J., Martinez, M., Donday, M., Clemente-Suarez, V.J., Fernandez-Lucas, ´ J., 2018a. Cloning, expression and biochemical characterization of xanthine and adenine phosphoribosyltransferases from thermus thermophilus HB8. Biocatal. Biotransform. 36 (3), 216–223. https://doi.org/10.1080/10242422.2017.1313837.Del Arco, J., Acosta, J., Pereira, H.M., Perona, A., Lokanath, N.K., Kunishima, N., Fern´ andez-Lucas, J., 2018b. Enzymatic production of non-natural nucleoside-5’- monophosphates by a novel thermostable uracil phosphoribosyltransferase. ChemCatChem 10, 439–448. https://doi.org/10.1002/cctc.201701223.Del Arco, J., Martínez-Pascual, S., Clemente-Su´ arez, V.J., Corral, O.J., Jordaan, J., Hormigo, D., Perona, A., Fern´ andez-Lucas, J., 2018c. One-pot, one-step production of dietary nucleotides by magnetic biocatalysts. Catalysts 8, 184. https://doi.org/ 10.3390/catal8050184.Del Arco, J., Jordaan, J., Moral-Dard´e, V., Fernandez-Lucas, ´ J., 2019a. Sustainable production of nucleoside analogues by a high-efficient purine 2‘- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles. Bioresour. Technol. 289, 121772. https://doi.org/10.1016/j.biortech.2019.121772.Del Arco, J., P´erez, E., Naitow, H., Matsuura, Y., Kunishima, N., Fernandez-Lucas, ´ J., 2019b. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′ -monophospate analogues. Bioresour. Technol. 276, 244–252. https://doi.org/10.1016/j.biortech.2018.12.120.Del Arco, J., Galindo, J., Clemente-Su´ arez, V.J., Corrales, A., Fern´ andez-Lucas, J., 2020. Sustainable synthesis of uridine-5′ -monophosphate analoguesues by immobilized uracil phosphoribosyltransferase from thermus thermophilus. Biochim. Biophys. Acta Proteins Proteom. 1868, 140251 https://doi.org/10.1016/j.bbapap.2019.07.004.Del Arco, J., Alcantara, ´ A.R., Fernandez-Lafuente, ´ R., Fernandez-Lucas, ´ J., 2021a. Magnetic micro-macro biocatalysts applied to industrial bioprocesses. Bioresour. Technol. 322, 124547. https://doi.org/10.1016/j.biortech.2020.124547.Del Arco, J., Acosta, J., Fern´ andez-Lucas, J., 2021b. New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2’- deoxyribosyltransferases. Biotechnol. Adv. 107701. https://doi.org/10.1016/j. biotechadv.2021.107701.DeLano, W.L., 2002. The PyMOL Molecular Graphics System. Delano Scientific, San Carlos.Fateev, I.V., Sinitsina, E.V., Bikanasova, A.U., Kostromina, M.A., Tuzova, E.S., Esipova, L. V., Muravyova, T.I., Kayushin, A.L., Konstantinova, I.D., Esipov, R.S., 2018. Thermophilic phosphoribosyltransferases thermus thermophilus HB27 in nucleotide synthesis. Beilstein J. Org. Chem. 14, 3098–3105. https://doi.org/10.3762/ bjoc.14.289.Fernandez-Lafuente, R., 2009. Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb. Technol. 45 (6-7), 405–418. https://doi.org/ 10.1016/j.enzmictec.2009.08.009. Fern´ andez-Lucas, J., Harris, R., Mata-CaFern´ andez-Lucas, J., Harris, R., Mata-Casar, I., Heras, A., de la Mata, I., Arroyo, M., 2013. Magnetic chitosan beads for covalent immobilization of nucleoside 2’- deoxyribosyltransferase: application in nucleoside analogues synthesis. J. Ind. Microbiol. Biotechnol. 40, 955–966. https://doi.org/10.1007/s10295-013-1304-4.Fernandez-Lucas, J., 2015. Multienzymatic synthesis of nucleic acid derivatives: a general perspective. Appl. Microbiol. Biotechnol. 99 (11), 4615–4627. https://doi. org/10.1007/s00253-015-6642-x.Fern´andez-Lucas, J. (Ed.), 2019. Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany https://doi. org/10.1002/9783527812103.Frisch, J., Marˇsi´c, T., Loderer, C., 2021. A novel one-pot enzyme cascade for the biosynthesis of cladribine triphosphate. Biomolecules 11, 346. https://doi.org/ 10.3390/biom11030346.Gill, S.C., von Hippel, P.H., 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182 (2), 319–326. https://doi.org/ 10.1016/0003-2697(89)90602-7.Gudino, ˜ E.D., Santillan, ´ J.Y., Iglesias, L.E., Iribarren, A.M., 2018. An enzymatic alternative for the synthesis of nucleoside 5′ -monophosphates. Enzyme Microb. Technol. 111, 1–6. https://doi.org/10.1016/j.enzmictec.2017.12.004.Iglesias, L.E., Lewkowicz, E.S., Medici, R., Bianchi, P., Iribarren, A.M., 2015. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs. Biotechnol. Adv. 33 (5), 412–434. https://doi.org/10.1016/j.biotechadv.2015.03.009.Jensen, H.K., Mikkelsen, N., Neuhard, J., 1997. Recombinant uracil phosphoribosyltransferase from the thermophile bacillus caldolyticus: expression, purification, and partial characterization. Protein Expr. Purif 10 (3), 356–364. https://doi.org/10.1006/prep.1997.0755.Liu, Z.-Q., Zhang, L., Sun, L.-H., Li, X.-J., Wan, N.-W., Zheng, Y.-G., 2012. Enzymatic production of 5′ -inosinic acid by a newly synthesised acid phosphatase/ phosphotransferase. Food Chem. 134 (2), 948–956. https://doi.org/10.1016/j. foodchem.2012.02.213.Martins, S.L., Albuquerque, B.F., Nunes, M.A., Ribeiro, M.H., 2018. Exploring magnetic and imprinted cross-linked enzyme aggregates of rhamnopyranosidase in microbioreactors. Bioresour. Technol. 249, 704–712. https://doi.org/10.1016/j. biortech.2017.10.078.Ngo, T.P., Li, A., Tiew, K.W., Li, Z., 2013. Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour. Technol. 145, 233–239. https://doi.org/10.1016/j.biortech.2012.12.053.Nguyen, K., Kubota, M., Del Arco, J., Feng, C., Singha, M., Beasley, S., Sakr, J., Gandhi, S., Blurton-Jones, M., Fern´ andez Lucas, J., Spitale, R.A., 2020. Bump-hole strategy for increased stringency of cell-specific metabolic labeling of RNA. ACS Chem. Biol. 15, 3099–3105. https://doi.org/10.1021/acschembio.0c00755.P´erez, E., Sanchez-Murcia, ´ P.A., Jordaan, J., Blanco, M.D., Mancheno, ˜ J.M., Gago, F., Fernandez-Lucas, ´ J., 2018. Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-deoxyribosyltransferase from trypanosoma brucei. ChemCatChem 10 (19), 4406–4416. https://doi.org/10.1002/ cctc.201800775.Rinaldi, F., Fernandez-Lucas, ´ J., de la Fuente, D., Zheng, C., Bavaro, T., Peters, B., Massolini, G., Annunziata, F., Conti, P., de la Mata, I., Terreni, M., Calleri, E., 2020. Immobilized enzyme reactors based on nucleoside phosphorylases and 2’- deoxyribosyltransferase for the in-flow synthesis of pharmaceutically relevant nucleoside analogues. Bioresour. Technol. 307, 123258. https://doi.org/10.1016/j. biortech.2020.123258.Roe, D.R., Cheatham III, T.E., 2013. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095. https://doi.org/10.1021/ct400341p.Serra, I., Conti, S., Piˇskur, J., Clausen, A.R., Munch-Petersen, B., Terreni, M., Ubiali, D., 2014. Immobilized Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) as a high performing biocatalyst for the synthesis of purine arabinonucleotides. Adv. Synth. Catal. 356 (2-3), 563–570. https://doi.org/10.1002/adsc.201300649.Scism, R.A., Stec, D.F., Bachmann, B.O., 2007. Synthesis of nucleotide analogues by a promiscuous phosphoribosyltransferase. Org. Lett. 9 (21), 4179–4182. https://doi. org/10.1021/ol701680210.1021/ol7016802.s002.Schumacher, M.A., Carter, D., Scott, D.M., Roos, D.S., Ullman, B., Brennan, R.G., 1998. Crystal structures of toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic basis of pyrimidine discrimination and prodrug binding. EMBO J. 17, 3219–3232. https://doi.org/10.1093/emboj/17.12.3219.Schumacher, M.A., Bashor, C.J., Song, M.H., Otsu, K., Zhu, S., Parry, R.J., Ullman, B., Brennan, R.G., 2002. The structural mechanism of GTP stabilized oligomerization and catalytic activation of the Toxoplasma gondii uracil phosphoribosyltransferase. Proc. Natl. Acad. Sci. 99 (1), 78–83. https://doi.org/10.1073/pnas.012399599.Slagman, S., Fessner, W.-D., 2021. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem. Soc. Rev. 50 (3), 1968–2009. https://doi.org/ 10.1039/D0CS00763C.Valino, A.L., Iribarren, A.M., Lewkowicz, E., 2015. New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents. J. Mol. Catal. B. Enzym. 114, 58–64. https://doi.org/10.1016/j. molcatb.2014.12.004.Walker, R.C., Crowley, M.F., Case, D.A., 2008. The implementation of a fast and accurate QM/MM potential method in Amber. J. Comput. Chem. 29 (7), 1019–1031. https:// doi.org/10.1002/jcc.20857.Wu, S., Snajdrova, R., Moore, J.C., Baldenius, K., Bornscheuer, U.T., 2021. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60 (1), 88–119. https://doi.org/10.1002/anie.202006648.Yata, V.K., Sen, K., Kumar, M.V.S., Ghosh, S.S., 2012. Interaction studies of E. coli uracil phosphoribosyltransferase with 5-fluorouracil for potent anti cancer activity. Med. Chem. Res. 21 (7), 1149–1155. https://doi.org/10.1007/s00044-011-9627-z.Yoshikawa, M., Kato, T., Takenishi, T., 1969. Studies of phosphorylation. III. selective phosphorylation of unprotected nucleosides. Bull. Chem. Soc. Jpn. 42 (12), 3505–3508. https://doi.org/10.1246/bcsj.42.3505.Zou, H., Cai, G., Cai, W., Li, H., Gu, Y., Park, Y., Meng, F., 2008. Extraction and DNA digestion of 5′ -phosphodiesterase from malt root. Tsinghua Sci. Technol. 13 (4), 480–484. https://doi.org/10.1016/S1007-0214(08)70077-4.Zou, Z., Ding, Q., Ou, L., Yan, B., 2013. Efficient production of deoxynucleoside-5′ - monophosphates using deoxynucleoside kinase coupled with a GTP-regeneration system. Appl. Microbiol. Biotechnol. 97 (21), 9389–9395. https://doi.org/10.1007/ s00253-013-5173-6.PublicationORIGINALTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdfTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdfapplication/pdf91479https://repositorio.cuc.edu.co/bitstreams/95adbd38-0e36-4ad5-afaf-52d747434895/download06bbc2bd63f9d75af986e43ea420ae4eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/ab400bae-5814-4188-8509-764ed7b9cbdd/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8cebe51b-dba6-4c56-9673-bfec30d4457b/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdf.jpgTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdf.jpgimage/jpeg51321https://repositorio.cuc.edu.co/bitstreams/39e587d8-3a84-481b-a27e-f34424adfb24/download9137cd7d65de08329e58b673c7684a5dMD54TEXTTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdf.txtTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdf.txttext/plain1442https://repositorio.cuc.edu.co/bitstreams/462feeb4-b673-4d7e-b823-a4ad47d77107/downloade7c105a38300d7f121e43db33f2322f5MD5511323/8625oai:repositorio.cuc.edu.co:11323/86252024-09-17 10:14:36.996http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==