Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii
Nowadays, enzymatic synthesis of nucleotides is an efficient and sustainable alternative to chemical methodologies. In this regard, after the biochemical characterization of wild-type and mutant uracil phosphoribosyltransferases from Toxoplasma gondii (TgUPRT, TgUPRT2, and TgUPRT3), TgUPRT2 was sele...
- Autores:
-
Acosta, Javier
Nguyen, Kim
C. Spitale, Robert
Fernández-Lucas, Jesús
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8625
- Acceso en línea:
- https://hdl.handle.net/11323/8625
https://doi.org/10.1016/j.biortech.2021.125649
https://repositorio.cuc.edu.co/
- Palabra clave:
- Nucleoside-5′-monophosphates
Phosphoribosyltransferases
Structure-guided immobilization
- Rights
- embargoedAccess
- License
- CC0 1.0 Universal
id |
RCUC2_33ae1b624983c219222429c388faf4ca |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8625 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii |
title |
Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii |
spellingShingle |
Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii Nucleoside-5′-monophosphates Phosphoribosyltransferases Structure-guided immobilization |
title_short |
Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii |
title_full |
Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii |
title_fullStr |
Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii |
title_full_unstemmed |
Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii |
title_sort |
Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii |
dc.creator.fl_str_mv |
Acosta, Javier Nguyen, Kim C. Spitale, Robert Fernández-Lucas, Jesús |
dc.contributor.author.spa.fl_str_mv |
Acosta, Javier Nguyen, Kim C. Spitale, Robert Fernández-Lucas, Jesús |
dc.subject.spa.fl_str_mv |
Nucleoside-5′-monophosphates Phosphoribosyltransferases Structure-guided immobilization |
topic |
Nucleoside-5′-monophosphates Phosphoribosyltransferases Structure-guided immobilization |
description |
Nowadays, enzymatic synthesis of nucleotides is an efficient and sustainable alternative to chemical methodologies. In this regard, after the biochemical characterization of wild-type and mutant uracil phosphoribosyltransferases from Toxoplasma gondii (TgUPRT, TgUPRT2, and TgUPRT3), TgUPRT2 was selected as the optimal candidate (69.5 IU mg−1, UMP synthesis) for structure-guided immobilization onto Ni2+ chelate (MNiUPRT2) and onto glutaraldehyde-activated microparticles (MGlUPRT2). Among resulting derivatives, MNiUPRT23 (6127 IU g−1biocat; 92% retained activity; 3–5 fold enhanced stability at 50–60 °C) and MGlUPRT2N (3711 IU g−1biocat; 27% retained activity; 8–20 fold enhanced stability at 50–60 °C) displayed the best operability. Moreover, the enzymatic synthesis of different pyrimidine NMPs was performed. Finally, the reusability of both derivatives in 5-FUMP synthesis (MNiUPRT23, 80% retained activity after 7 cycles, 5 min; MGlUPRT2N, 70% retained activity after 10 cycles, 20 min) was carried out at short times. © 2021 Elsevier Ltd |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-03T17:01:58Z |
dc.date.available.none.fl_str_mv |
2021-09-03T17:01:58Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.embargoEnd.none.fl_str_mv |
2023-07-21 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
09608524 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8625 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.biortech.2021.125649 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
09608524 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8625 https://doi.org/10.1016/j.biortech.2021.125649 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Acosta, J., Del Arco, J., Martinez-Pascual, S., Clemente-Suarez, ´ V.J., Fernandez-Lucas, ´ J., 2018. One-pot multi-enzymatic production of purine derivatives with application in pharmaceutical and food industry. Catalysts 8, 9. https://doi.org/10.3390/ catal8010009. Acosta, J., Del Arco, J., Pisabarro, V., Gago, F., Fernandez-Lucas, ´ J., 2020a. Nribosyltransferase from Archaeoglobus veneficus: a novel halotolerant and thermostable biocatalyst for the synthesis of purine ribonucleoside analogs. Front. Bioeng. Biotechnol. 8, 593. https://doi.org/10.3389/fbioe.2020.00593. Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677. Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677. Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677. Al-Qodah, Z., Al-Shannag, M., Al-Bosoul, M., Penchev, I., Al-Ahmadi, H., Al-Qodah, K., 2018. On the performance of immobilized cell bioreactors utilizing a magnetic field. Rev. Chem. Eng. 34, 385–408. https://doi.org/10.1515/revce-2016-0059. Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A., ´ Rodrigues, R.C., FernandezLafuente, R., 2013. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols toopportunities in tuning enzyme properties. Biomacromolecules 14 (8), 2433–2462. https://doi.org/10.1021/bm400762h. Barbosa, O., Ortiz, C., Berenguer-Murcia, A., ´ Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2015. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33 (5), 435–456. https://doi. org/10.1016/j.biotechadv.2015.03.006. Bedade, D.K., Muley, A.B., Singhal, R.S., 2019. Magnetic cross-linked enzyme aggregates of acrylamidase from cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresour. Technol. 272, 137–145. https:// doi.org/10.1016/j.biortech.2018.10.015. Arco, J.D., Fernandez-Lucas, J., 2018. Purine and pyrimidine phosphoribosyltransferases: a versatile tool for enzymatic synthesis of nucleoside-5’- monophosphates. Curr. Pharm. Des. 23 (45), 6898–6912. https://doi.org/10.2174/ 1381612823666171017165707 Del Arco, J., Cejudo-Sanches, J., Esteban, I., Clemente-Su´ arez, V.J., Hormigo, D., Perona, A., Fernandez-Lucas, ´ J., 2017. Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst. Food Chem. 237, 605–611. https://doi.org/10.1016/j. foodchem.2017.05.136. Del Arco, J., Martinez, M., Donday, M., Clemente-Suarez, V.J., Fernandez-Lucas, ´ J., 2018a. Cloning, expression and biochemical characterization of xanthine and adenine phosphoribosyltransferases from thermus thermophilus HB8. Biocatal. Biotransform. 36 (3), 216–223. https://doi.org/10.1080/10242422.2017.1313837. Del Arco, J., Acosta, J., Pereira, H.M., Perona, A., Lokanath, N.K., Kunishima, N., Fern´ andez-Lucas, J., 2018b. Enzymatic production of non-natural nucleoside-5’- monophosphates by a novel thermostable uracil phosphoribosyltransferase. ChemCatChem 10, 439–448. https://doi.org/10.1002/cctc.201701223. Del Arco, J., Martínez-Pascual, S., Clemente-Su´ arez, V.J., Corral, O.J., Jordaan, J., Hormigo, D., Perona, A., Fern´ andez-Lucas, J., 2018c. One-pot, one-step production of dietary nucleotides by magnetic biocatalysts. Catalysts 8, 184. https://doi.org/ 10.3390/catal8050184. Del Arco, J., Jordaan, J., Moral-Dard´e, V., Fernandez-Lucas, ´ J., 2019a. Sustainable production of nucleoside analogues by a high-efficient purine 2‘- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles. Bioresour. Technol. 289, 121772. https://doi.org/10.1016/j.biortech.2019.121772. Del Arco, J., P´erez, E., Naitow, H., Matsuura, Y., Kunishima, N., Fernandez-Lucas, ´ J., 2019b. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′ -monophospate analogues. Bioresour. Technol. 276, 244–252. https://doi.org/10.1016/j.biortech.2018.12.120. Del Arco, J., Galindo, J., Clemente-Su´ arez, V.J., Corrales, A., Fern´ andez-Lucas, J., 2020. Sustainable synthesis of uridine-5′ -monophosphate analoguesues by immobilized uracil phosphoribosyltransferase from thermus thermophilus. Biochim. Biophys. Acta Proteins Proteom. 1868, 140251 https://doi.org/10.1016/j.bbapap.2019.07.004. Del Arco, J., Alcantara, ´ A.R., Fernandez-Lafuente, ´ R., Fernandez-Lucas, ´ J., 2021a. Magnetic micro-macro biocatalysts applied to industrial bioprocesses. Bioresour. Technol. 322, 124547. https://doi.org/10.1016/j.biortech.2020.124547. Del Arco, J., Acosta, J., Fern´ andez-Lucas, J., 2021b. New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2’- deoxyribosyltransferases. Biotechnol. Adv. 107701. https://doi.org/10.1016/j. biotechadv.2021.107701. DeLano, W.L., 2002. The PyMOL Molecular Graphics System. Delano Scientific, San Carlos. Fateev, I.V., Sinitsina, E.V., Bikanasova, A.U., Kostromina, M.A., Tuzova, E.S., Esipova, L. V., Muravyova, T.I., Kayushin, A.L., Konstantinova, I.D., Esipov, R.S., 2018. Thermophilic phosphoribosyltransferases thermus thermophilus HB27 in nucleotide synthesis. Beilstein J. Org. Chem. 14, 3098–3105. https://doi.org/10.3762/ bjoc.14.289. Fernandez-Lafuente, R., 2009. Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb. Technol. 45 (6-7), 405–418. https://doi.org/ 10.1016/j.enzmictec.2009.08.009. Fern´ andez-Lucas, J., Harris, R., Mata-Ca Fern´ andez-Lucas, J., Harris, R., Mata-Casar, I., Heras, A., de la Mata, I., Arroyo, M., 2013. Magnetic chitosan beads for covalent immobilization of nucleoside 2’- deoxyribosyltransferase: application in nucleoside analogues synthesis. J. Ind. Microbiol. Biotechnol. 40, 955–966. https://doi.org/10.1007/s10295-013-1304-4. Fernandez-Lucas, J., 2015. Multienzymatic synthesis of nucleic acid derivatives: a general perspective. Appl. Microbiol. Biotechnol. 99 (11), 4615–4627. https://doi. org/10.1007/s00253-015-6642-x. Fern´andez-Lucas, J. (Ed.), 2019. Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany https://doi. org/10.1002/9783527812103. Frisch, J., Marˇsi´c, T., Loderer, C., 2021. A novel one-pot enzyme cascade for the biosynthesis of cladribine triphosphate. Biomolecules 11, 346. https://doi.org/ 10.3390/biom11030346. Gill, S.C., von Hippel, P.H., 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182 (2), 319–326. https://doi.org/ 10.1016/0003-2697(89)90602-7. Gudino, ˜ E.D., Santillan, ´ J.Y., Iglesias, L.E., Iribarren, A.M., 2018. An enzymatic alternative for the synthesis of nucleoside 5′ -monophosphates. Enzyme Microb. Technol. 111, 1–6. https://doi.org/10.1016/j.enzmictec.2017.12.004. Iglesias, L.E., Lewkowicz, E.S., Medici, R., Bianchi, P., Iribarren, A.M., 2015. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs. Biotechnol. Adv. 33 (5), 412–434. https://doi.org/10.1016/j.biotechadv.2015.03.009. Jensen, H.K., Mikkelsen, N., Neuhard, J., 1997. Recombinant uracil phosphoribosyltransferase from the thermophile bacillus caldolyticus: expression, purification, and partial characterization. Protein Expr. Purif 10 (3), 356–364. https://doi.org/10.1006/prep.1997.0755. Liu, Z.-Q., Zhang, L., Sun, L.-H., Li, X.-J., Wan, N.-W., Zheng, Y.-G., 2012. Enzymatic production of 5′ -inosinic acid by a newly synthesised acid phosphatase/ phosphotransferase. Food Chem. 134 (2), 948–956. https://doi.org/10.1016/j. foodchem.2012.02.213. Martins, S.L., Albuquerque, B.F., Nunes, M.A., Ribeiro, M.H., 2018. Exploring magnetic and imprinted cross-linked enzyme aggregates of rhamnopyranosidase in microbioreactors. Bioresour. Technol. 249, 704–712. https://doi.org/10.1016/j. biortech.2017.10.078. Ngo, T.P., Li, A., Tiew, K.W., Li, Z., 2013. Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour. Technol. 145, 233–239. https://doi.org/10.1016/j.biortech.2012.12.053. Nguyen, K., Kubota, M., Del Arco, J., Feng, C., Singha, M., Beasley, S., Sakr, J., Gandhi, S., Blurton-Jones, M., Fern´ andez Lucas, J., Spitale, R.A., 2020. Bump-hole strategy for increased stringency of cell-specific metabolic labeling of RNA. ACS Chem. Biol. 15, 3099–3105. https://doi.org/10.1021/acschembio.0c00755. P´erez, E., Sanchez-Murcia, ´ P.A., Jordaan, J., Blanco, M.D., Mancheno, ˜ J.M., Gago, F., Fernandez-Lucas, ´ J., 2018. Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-deoxyribosyltransferase from trypanosoma brucei. ChemCatChem 10 (19), 4406–4416. https://doi.org/10.1002/ cctc.201800775. Rinaldi, F., Fernandez-Lucas, ´ J., de la Fuente, D., Zheng, C., Bavaro, T., Peters, B., Massolini, G., Annunziata, F., Conti, P., de la Mata, I., Terreni, M., Calleri, E., 2020. Immobilized enzyme reactors based on nucleoside phosphorylases and 2’- deoxyribosyltransferase for the in-flow synthesis of pharmaceutically relevant nucleoside analogues. Bioresour. Technol. 307, 123258. https://doi.org/10.1016/j. biortech.2020.123258. Roe, D.R., Cheatham III, T.E., 2013. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095. https://doi.org/10.1021/ct400341p. Serra, I., Conti, S., Piˇskur, J., Clausen, A.R., Munch-Petersen, B., Terreni, M., Ubiali, D., 2014. Immobilized Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) as a high performing biocatalyst for the synthesis of purine arabinonucleotides. Adv. Synth. Catal. 356 (2-3), 563–570. https://doi.org/10.1002/adsc.201300649. Scism, R.A., Stec, D.F., Bachmann, B.O., 2007. Synthesis of nucleotide analogues by a promiscuous phosphoribosyltransferase. Org. Lett. 9 (21), 4179–4182. https://doi. org/10.1021/ol701680210.1021/ol7016802.s002. Schumacher, M.A., Carter, D., Scott, D.M., Roos, D.S., Ullman, B., Brennan, R.G., 1998. Crystal structures of toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic basis of pyrimidine discrimination and prodrug binding. EMBO J. 17, 3219–3232. https://doi.org/10.1093/emboj/17.12.3219. Schumacher, M.A., Bashor, C.J., Song, M.H., Otsu, K., Zhu, S., Parry, R.J., Ullman, B., Brennan, R.G., 2002. The structural mechanism of GTP stabilized oligomerization and catalytic activation of the Toxoplasma gondii uracil phosphoribosyltransferase. Proc. Natl. Acad. Sci. 99 (1), 78–83. https://doi.org/10.1073/pnas.012399599. Slagman, S., Fessner, W.-D., 2021. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem. Soc. Rev. 50 (3), 1968–2009. https://doi.org/ 10.1039/D0CS00763C. Valino, A.L., Iribarren, A.M., Lewkowicz, E., 2015. New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents. J. Mol. Catal. B. Enzym. 114, 58–64. https://doi.org/10.1016/j. molcatb.2014.12.004. Walker, R.C., Crowley, M.F., Case, D.A., 2008. The implementation of a fast and accurate QM/MM potential method in Amber. J. Comput. Chem. 29 (7), 1019–1031. https:// doi.org/10.1002/jcc.20857. Wu, S., Snajdrova, R., Moore, J.C., Baldenius, K., Bornscheuer, U.T., 2021. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60 (1), 88–119. https://doi.org/10.1002/anie.202006648. Yata, V.K., Sen, K., Kumar, M.V.S., Ghosh, S.S., 2012. Interaction studies of E. coli uracil phosphoribosyltransferase with 5-fluorouracil for potent anti cancer activity. Med. Chem. Res. 21 (7), 1149–1155. https://doi.org/10.1007/s00044-011-9627-z. Yoshikawa, M., Kato, T., Takenishi, T., 1969. Studies of phosphorylation. III. selective phosphorylation of unprotected nucleosides. Bull. Chem. Soc. Jpn. 42 (12), 3505–3508. https://doi.org/10.1246/bcsj.42.3505. Zou, H., Cai, G., Cai, W., Li, H., Gu, Y., Park, Y., Meng, F., 2008. Extraction and DNA digestion of 5′ -phosphodiesterase from malt root. Tsinghua Sci. Technol. 13 (4), 480–484. https://doi.org/10.1016/S1007-0214(08)70077-4. Zou, Z., Ding, Q., Ou, L., Yan, B., 2013. Efficient production of deoxynucleoside-5′ - monophosphates using deoxynucleoside kinase coupled with a GTP-regeneration system. Appl. Microbiol. Biotechnol. 97 (21), 9389–9395. https://doi.org/10.1007/ s00253-013-5173-6. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Bioresource Technology |
dc.source.spa.fl_str_mv |
Bioresource Technology |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0960852421009901 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/95adbd38-0e36-4ad5-afaf-52d747434895/download https://repositorio.cuc.edu.co/bitstreams/ab400bae-5814-4188-8509-764ed7b9cbdd/download https://repositorio.cuc.edu.co/bitstreams/8cebe51b-dba6-4c56-9673-bfec30d4457b/download https://repositorio.cuc.edu.co/bitstreams/39e587d8-3a84-481b-a27e-f34424adfb24/download https://repositorio.cuc.edu.co/bitstreams/462feeb4-b673-4d7e-b823-a4ad47d77107/download |
bitstream.checksum.fl_str_mv |
06bbc2bd63f9d75af986e43ea420ae4e 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 9137cd7d65de08329e58b673c7684a5d e7c105a38300d7f121e43db33f2322f5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760694038626304 |
spelling |
Acosta, JavierNguyen, KimC. Spitale, RobertFernández-Lucas, Jesús2021-09-03T17:01:58Z2021-09-03T17:01:58Z20212023-07-2109608524https://hdl.handle.net/11323/8625https://doi.org/10.1016/j.biortech.2021.125649Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Nowadays, enzymatic synthesis of nucleotides is an efficient and sustainable alternative to chemical methodologies. In this regard, after the biochemical characterization of wild-type and mutant uracil phosphoribosyltransferases from Toxoplasma gondii (TgUPRT, TgUPRT2, and TgUPRT3), TgUPRT2 was selected as the optimal candidate (69.5 IU mg−1, UMP synthesis) for structure-guided immobilization onto Ni2+ chelate (MNiUPRT2) and onto glutaraldehyde-activated microparticles (MGlUPRT2). Among resulting derivatives, MNiUPRT23 (6127 IU g−1biocat; 92% retained activity; 3–5 fold enhanced stability at 50–60 °C) and MGlUPRT2N (3711 IU g−1biocat; 27% retained activity; 8–20 fold enhanced stability at 50–60 °C) displayed the best operability. Moreover, the enzymatic synthesis of different pyrimidine NMPs was performed. Finally, the reusability of both derivatives in 5-FUMP synthesis (MNiUPRT23, 80% retained activity after 7 cycles, 5 min; MGlUPRT2N, 70% retained activity after 10 cycles, 20 min) was carried out at short times. © 2021 Elsevier LtdAcosta, Javier-will be generated-orcid-0000-0002-7710-5703-600Nguyen, KimC. Spitale, RobertFernández-Lucas, Jesús-will be generated-orcid-0000-0001-7045-8306-600application/pdfengBioresource TechnologyCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfBioresource Technologyhttps://www.sciencedirect.com/science/article/pii/S0960852421009901Nucleoside-5′-monophosphatesPhosphoribosyltransferasesStructure-guided immobilizationTaylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondiiArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAcosta, J., Del Arco, J., Martinez-Pascual, S., Clemente-Suarez, ´ V.J., Fernandez-Lucas, ´ J., 2018. One-pot multi-enzymatic production of purine derivatives with application in pharmaceutical and food industry. Catalysts 8, 9. https://doi.org/10.3390/ catal8010009.Acosta, J., Del Arco, J., Pisabarro, V., Gago, F., Fernandez-Lucas, ´ J., 2020a. Nribosyltransferase from Archaeoglobus veneficus: a novel halotolerant and thermostable biocatalyst for the synthesis of purine ribonucleoside analogs. Front. Bioeng. Biotechnol. 8, 593. https://doi.org/10.3389/fbioe.2020.00593.Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677.Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677.Acosta, J., Del Arco, J., Del Pozo, M.L., Herrera-Tapias, B., Clemente-Suarez, ´ V.J., Berenguer, J., Hidalgo, A., Fernandez-Lucas, ´ J., 2020b. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5′ -mono-, di-and triphosphates. Front. Bioeng. Biotechnol. 8, 677. https://doi.org/10.3389/fbioe.2020.00677.Al-Qodah, Z., Al-Shannag, M., Al-Bosoul, M., Penchev, I., Al-Ahmadi, H., Al-Qodah, K., 2018. On the performance of immobilized cell bioreactors utilizing a magnetic field. Rev. Chem. Eng. 34, 385–408. https://doi.org/10.1515/revce-2016-0059.Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A., ´ Rodrigues, R.C., FernandezLafuente, R., 2013. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols toopportunities in tuning enzyme properties. Biomacromolecules 14 (8), 2433–2462. https://doi.org/10.1021/bm400762h.Barbosa, O., Ortiz, C., Berenguer-Murcia, A., ´ Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2015. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33 (5), 435–456. https://doi. org/10.1016/j.biotechadv.2015.03.006.Bedade, D.K., Muley, A.B., Singhal, R.S., 2019. Magnetic cross-linked enzyme aggregates of acrylamidase from cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresour. Technol. 272, 137–145. https:// doi.org/10.1016/j.biortech.2018.10.015.Arco, J.D., Fernandez-Lucas, J., 2018. Purine and pyrimidine phosphoribosyltransferases: a versatile tool for enzymatic synthesis of nucleoside-5’- monophosphates. Curr. Pharm. Des. 23 (45), 6898–6912. https://doi.org/10.2174/ 1381612823666171017165707Del Arco, J., Cejudo-Sanches, J., Esteban, I., Clemente-Su´ arez, V.J., Hormigo, D., Perona, A., Fernandez-Lucas, ´ J., 2017. Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst. Food Chem. 237, 605–611. https://doi.org/10.1016/j. foodchem.2017.05.136.Del Arco, J., Martinez, M., Donday, M., Clemente-Suarez, V.J., Fernandez-Lucas, ´ J., 2018a. Cloning, expression and biochemical characterization of xanthine and adenine phosphoribosyltransferases from thermus thermophilus HB8. Biocatal. Biotransform. 36 (3), 216–223. https://doi.org/10.1080/10242422.2017.1313837.Del Arco, J., Acosta, J., Pereira, H.M., Perona, A., Lokanath, N.K., Kunishima, N., Fern´ andez-Lucas, J., 2018b. Enzymatic production of non-natural nucleoside-5’- monophosphates by a novel thermostable uracil phosphoribosyltransferase. ChemCatChem 10, 439–448. https://doi.org/10.1002/cctc.201701223.Del Arco, J., Martínez-Pascual, S., Clemente-Su´ arez, V.J., Corral, O.J., Jordaan, J., Hormigo, D., Perona, A., Fern´ andez-Lucas, J., 2018c. One-pot, one-step production of dietary nucleotides by magnetic biocatalysts. Catalysts 8, 184. https://doi.org/ 10.3390/catal8050184.Del Arco, J., Jordaan, J., Moral-Dard´e, V., Fernandez-Lucas, ´ J., 2019a. Sustainable production of nucleoside analogues by a high-efficient purine 2‘- deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles. Bioresour. Technol. 289, 121772. https://doi.org/10.1016/j.biortech.2019.121772.Del Arco, J., P´erez, E., Naitow, H., Matsuura, Y., Kunishima, N., Fernandez-Lucas, ´ J., 2019b. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′ -monophospate analogues. Bioresour. Technol. 276, 244–252. https://doi.org/10.1016/j.biortech.2018.12.120.Del Arco, J., Galindo, J., Clemente-Su´ arez, V.J., Corrales, A., Fern´ andez-Lucas, J., 2020. Sustainable synthesis of uridine-5′ -monophosphate analoguesues by immobilized uracil phosphoribosyltransferase from thermus thermophilus. Biochim. Biophys. Acta Proteins Proteom. 1868, 140251 https://doi.org/10.1016/j.bbapap.2019.07.004.Del Arco, J., Alcantara, ´ A.R., Fernandez-Lafuente, ´ R., Fernandez-Lucas, ´ J., 2021a. Magnetic micro-macro biocatalysts applied to industrial bioprocesses. Bioresour. Technol. 322, 124547. https://doi.org/10.1016/j.biortech.2020.124547.Del Arco, J., Acosta, J., Fern´ andez-Lucas, J., 2021b. New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2’- deoxyribosyltransferases. Biotechnol. Adv. 107701. https://doi.org/10.1016/j. biotechadv.2021.107701.DeLano, W.L., 2002. The PyMOL Molecular Graphics System. Delano Scientific, San Carlos.Fateev, I.V., Sinitsina, E.V., Bikanasova, A.U., Kostromina, M.A., Tuzova, E.S., Esipova, L. V., Muravyova, T.I., Kayushin, A.L., Konstantinova, I.D., Esipov, R.S., 2018. Thermophilic phosphoribosyltransferases thermus thermophilus HB27 in nucleotide synthesis. Beilstein J. Org. Chem. 14, 3098–3105. https://doi.org/10.3762/ bjoc.14.289.Fernandez-Lafuente, R., 2009. Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb. Technol. 45 (6-7), 405–418. https://doi.org/ 10.1016/j.enzmictec.2009.08.009. Fern´ andez-Lucas, J., Harris, R., Mata-CaFern´ andez-Lucas, J., Harris, R., Mata-Casar, I., Heras, A., de la Mata, I., Arroyo, M., 2013. Magnetic chitosan beads for covalent immobilization of nucleoside 2’- deoxyribosyltransferase: application in nucleoside analogues synthesis. J. Ind. Microbiol. Biotechnol. 40, 955–966. https://doi.org/10.1007/s10295-013-1304-4.Fernandez-Lucas, J., 2015. Multienzymatic synthesis of nucleic acid derivatives: a general perspective. Appl. Microbiol. Biotechnol. 99 (11), 4615–4627. https://doi. org/10.1007/s00253-015-6642-x.Fern´andez-Lucas, J. (Ed.), 2019. Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany https://doi. org/10.1002/9783527812103.Frisch, J., Marˇsi´c, T., Loderer, C., 2021. A novel one-pot enzyme cascade for the biosynthesis of cladribine triphosphate. Biomolecules 11, 346. https://doi.org/ 10.3390/biom11030346.Gill, S.C., von Hippel, P.H., 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182 (2), 319–326. https://doi.org/ 10.1016/0003-2697(89)90602-7.Gudino, ˜ E.D., Santillan, ´ J.Y., Iglesias, L.E., Iribarren, A.M., 2018. An enzymatic alternative for the synthesis of nucleoside 5′ -monophosphates. Enzyme Microb. Technol. 111, 1–6. https://doi.org/10.1016/j.enzmictec.2017.12.004.Iglesias, L.E., Lewkowicz, E.S., Medici, R., Bianchi, P., Iribarren, A.M., 2015. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs. Biotechnol. Adv. 33 (5), 412–434. https://doi.org/10.1016/j.biotechadv.2015.03.009.Jensen, H.K., Mikkelsen, N., Neuhard, J., 1997. Recombinant uracil phosphoribosyltransferase from the thermophile bacillus caldolyticus: expression, purification, and partial characterization. Protein Expr. Purif 10 (3), 356–364. https://doi.org/10.1006/prep.1997.0755.Liu, Z.-Q., Zhang, L., Sun, L.-H., Li, X.-J., Wan, N.-W., Zheng, Y.-G., 2012. Enzymatic production of 5′ -inosinic acid by a newly synthesised acid phosphatase/ phosphotransferase. Food Chem. 134 (2), 948–956. https://doi.org/10.1016/j. foodchem.2012.02.213.Martins, S.L., Albuquerque, B.F., Nunes, M.A., Ribeiro, M.H., 2018. Exploring magnetic and imprinted cross-linked enzyme aggregates of rhamnopyranosidase in microbioreactors. Bioresour. Technol. 249, 704–712. https://doi.org/10.1016/j. biortech.2017.10.078.Ngo, T.P., Li, A., Tiew, K.W., Li, Z., 2013. Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour. Technol. 145, 233–239. https://doi.org/10.1016/j.biortech.2012.12.053.Nguyen, K., Kubota, M., Del Arco, J., Feng, C., Singha, M., Beasley, S., Sakr, J., Gandhi, S., Blurton-Jones, M., Fern´ andez Lucas, J., Spitale, R.A., 2020. Bump-hole strategy for increased stringency of cell-specific metabolic labeling of RNA. ACS Chem. Biol. 15, 3099–3105. https://doi.org/10.1021/acschembio.0c00755.P´erez, E., Sanchez-Murcia, ´ P.A., Jordaan, J., Blanco, M.D., Mancheno, ˜ J.M., Gago, F., Fernandez-Lucas, ´ J., 2018. Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-deoxyribosyltransferase from trypanosoma brucei. ChemCatChem 10 (19), 4406–4416. https://doi.org/10.1002/ cctc.201800775.Rinaldi, F., Fernandez-Lucas, ´ J., de la Fuente, D., Zheng, C., Bavaro, T., Peters, B., Massolini, G., Annunziata, F., Conti, P., de la Mata, I., Terreni, M., Calleri, E., 2020. Immobilized enzyme reactors based on nucleoside phosphorylases and 2’- deoxyribosyltransferase for the in-flow synthesis of pharmaceutically relevant nucleoside analogues. Bioresour. Technol. 307, 123258. https://doi.org/10.1016/j. biortech.2020.123258.Roe, D.R., Cheatham III, T.E., 2013. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095. https://doi.org/10.1021/ct400341p.Serra, I., Conti, S., Piˇskur, J., Clausen, A.R., Munch-Petersen, B., Terreni, M., Ubiali, D., 2014. Immobilized Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) as a high performing biocatalyst for the synthesis of purine arabinonucleotides. Adv. Synth. Catal. 356 (2-3), 563–570. https://doi.org/10.1002/adsc.201300649.Scism, R.A., Stec, D.F., Bachmann, B.O., 2007. Synthesis of nucleotide analogues by a promiscuous phosphoribosyltransferase. Org. Lett. 9 (21), 4179–4182. https://doi. org/10.1021/ol701680210.1021/ol7016802.s002.Schumacher, M.A., Carter, D., Scott, D.M., Roos, D.S., Ullman, B., Brennan, R.G., 1998. Crystal structures of toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic basis of pyrimidine discrimination and prodrug binding. EMBO J. 17, 3219–3232. https://doi.org/10.1093/emboj/17.12.3219.Schumacher, M.A., Bashor, C.J., Song, M.H., Otsu, K., Zhu, S., Parry, R.J., Ullman, B., Brennan, R.G., 2002. The structural mechanism of GTP stabilized oligomerization and catalytic activation of the Toxoplasma gondii uracil phosphoribosyltransferase. Proc. Natl. Acad. Sci. 99 (1), 78–83. https://doi.org/10.1073/pnas.012399599.Slagman, S., Fessner, W.-D., 2021. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem. Soc. Rev. 50 (3), 1968–2009. https://doi.org/ 10.1039/D0CS00763C.Valino, A.L., Iribarren, A.M., Lewkowicz, E., 2015. New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents. J. Mol. Catal. B. Enzym. 114, 58–64. https://doi.org/10.1016/j. molcatb.2014.12.004.Walker, R.C., Crowley, M.F., Case, D.A., 2008. The implementation of a fast and accurate QM/MM potential method in Amber. J. Comput. Chem. 29 (7), 1019–1031. https:// doi.org/10.1002/jcc.20857.Wu, S., Snajdrova, R., Moore, J.C., Baldenius, K., Bornscheuer, U.T., 2021. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60 (1), 88–119. https://doi.org/10.1002/anie.202006648.Yata, V.K., Sen, K., Kumar, M.V.S., Ghosh, S.S., 2012. Interaction studies of E. coli uracil phosphoribosyltransferase with 5-fluorouracil for potent anti cancer activity. Med. Chem. Res. 21 (7), 1149–1155. https://doi.org/10.1007/s00044-011-9627-z.Yoshikawa, M., Kato, T., Takenishi, T., 1969. Studies of phosphorylation. III. selective phosphorylation of unprotected nucleosides. Bull. Chem. Soc. Jpn. 42 (12), 3505–3508. https://doi.org/10.1246/bcsj.42.3505.Zou, H., Cai, G., Cai, W., Li, H., Gu, Y., Park, Y., Meng, F., 2008. Extraction and DNA digestion of 5′ -phosphodiesterase from malt root. Tsinghua Sci. Technol. 13 (4), 480–484. https://doi.org/10.1016/S1007-0214(08)70077-4.Zou, Z., Ding, Q., Ou, L., Yan, B., 2013. Efficient production of deoxynucleoside-5′ - monophosphates using deoxynucleoside kinase coupled with a GTP-regeneration system. Appl. Microbiol. Biotechnol. 97 (21), 9389–9395. https://doi.org/10.1007/ s00253-013-5173-6.PublicationORIGINALTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdfTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdfapplication/pdf91479https://repositorio.cuc.edu.co/bitstreams/95adbd38-0e36-4ad5-afaf-52d747434895/download06bbc2bd63f9d75af986e43ea420ae4eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/ab400bae-5814-4188-8509-764ed7b9cbdd/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8cebe51b-dba6-4c56-9673-bfec30d4457b/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdf.jpgTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdf.jpgimage/jpeg51321https://repositorio.cuc.edu.co/bitstreams/39e587d8-3a84-481b-a27e-f34424adfb24/download9137cd7d65de08329e58b673c7684a5dMD54TEXTTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdf.txtTAYLOR-MADE PRODUCTION OF PYRIMIDINE NUCLEOSIDE-5′-MONOPHOSPHATE ANALOGUES BY HIGHLY STABILIZED MUTANT URACIL PHOSPHORIBOSYLTRANSFERASE FROM TOXOPLASMA GONDII.pdf.txttext/plain1442https://repositorio.cuc.edu.co/bitstreams/462feeb4-b673-4d7e-b823-a4ad47d77107/downloade7c105a38300d7f121e43db33f2322f5MD5511323/8625oai:repositorio.cuc.edu.co:11323/86252024-09-17 10:14:36.996http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |