Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption

Due to its toxicity, the presence of Cu(II) ions released in aquatic environments presents a serious threat to the environment and human health. In search of sustainable and low-cost alternatives, there are citrus fruit residues, which are generated in large quantities by the juice industries and ca...

Full description

Autores:
da Silva, Mariele D.
Schnorr, Carlos Eduardo
Frantz Lütke, Sabrina
Silva Oliveira, Luis Felipe
Manera, Christian
Perondi, Daniele
Godinho, Marcelo
Collazzo, Gabriela C.
Dotto, Guilherme Luiz
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10481
Acceso en línea:
https://hdl.handle.net/11323/10481
https://repositorio.cuc.edu.co/
Palabra clave:
Citrus wastes
Citrus wastes
Activating agents
Sustainable adsorbents
Precursors
Rights
embargoedAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_2c2aaea0b342cec03f6cf249912930c7
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10481
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption
title Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption
spellingShingle Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption
Citrus wastes
Citrus wastes
Activating agents
Sustainable adsorbents
Precursors
title_short Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption
title_full Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption
title_fullStr Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption
title_full_unstemmed Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption
title_sort Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption
dc.creator.fl_str_mv da Silva, Mariele D.
Schnorr, Carlos Eduardo
Frantz Lütke, Sabrina
Silva Oliveira, Luis Felipe
Manera, Christian
Perondi, Daniele
Godinho, Marcelo
Collazzo, Gabriela C.
Dotto, Guilherme Luiz
dc.contributor.author.none.fl_str_mv da Silva, Mariele D.
Schnorr, Carlos Eduardo
Frantz Lütke, Sabrina
Silva Oliveira, Luis Felipe
Manera, Christian
Perondi, Daniele
Godinho, Marcelo
Collazzo, Gabriela C.
Dotto, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Citrus wastes
Citrus wastes
Activating agents
Sustainable adsorbents
Precursors
topic Citrus wastes
Citrus wastes
Activating agents
Sustainable adsorbents
Precursors
description Due to its toxicity, the presence of Cu(II) ions released in aquatic environments presents a serious threat to the environment and human health. In search of sustainable and low-cost alternatives, there are citrus fruit residues, which are generated in large quantities by the juice industries and can be used to produce activated carbons. Therefore, the physical route was investigated for producing activated carbons to reuse citrus wastes. In this work, eight activated carbons were developed, varying the precursor (orange peel-OP, mandarine peel-MP, rangpur lime peel-RLP, and sweet lime peel-SLP) and the activating agent (CO2 and H2O) to remove Cu(II) ions of the aqueous medium. Results revealed promising activated carbons with a micro-mesoporous structure, a specific surface area of around 400 m2 g–1, and a pore volume of around 0.25 cm3 g–1. In addition, Cu (II) adsorption was favored at pH 5.5. The kinetic study showed that the equilibrium was reached within 60 min removing about 80% of Cu(II) ions. The Sips model was the most suitable for the equilibrium data, providing maximum adsorption capacities (qmS) values of 69.69, 70.27, 88.04, 67.83 mg g–1 for activated carbons (AC-CO2) from OP, MP, RLP, and SLP, respectively. The thermodynamic behavior showed that the adsorption process of Cu(II) ions was spontaneous, favorable, and endothermic. It was suggested that the mechanism was controlled by surface complexation and Cu2+-π interaction. Desorption was possible with an HCl solution (0.5 mol L–1). From the results obtained in this work, it is possible to infer that citrus residues could be successfully converted into efficient adsorbents to remove Cu(II) ions from aqueous solutions.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-12T18:35:33Z
dc.date.available.none.fl_str_mv 2023-09-12T18:35:33Z
2024
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.citation.spa.fl_str_mv da Silva, M.D., Schnorr, C., Lütke, S.F. et al. Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption. Environ Sci Pollut Res 30, 63661–63677 (2023). https://doi.org/10.1007/s11356-023-26860-2
dc.identifier.issn.spa.fl_str_mv 0944-1344
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10481
dc.identifier.doi.none.fl_str_mv 10.1007/s11356-023-26860-2
dc.identifier.eissn.spa.fl_str_mv 1614-7499
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv da Silva, M.D., Schnorr, C., Lütke, S.F. et al. Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption. Environ Sci Pollut Res 30, 63661–63677 (2023). https://doi.org/10.1007/s11356-023-26860-2
0944-1344
10.1007/s11356-023-26860-2
1614-7499
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10481
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Environmental Science and Pollution Research
dc.relation.references.spa.fl_str_mv Ahmad Z, Gao B, Mosa A, Yu H, Yin X, Bashir A, Ghoveisi H, Wang S (2018) Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J Clean Prod 180:437–449. https://doi.org/10.1016/j.jclepro.2018.01.133
Al-Lagtah NMA, Al-Muhtaseb AH, Ahmad MNM, Salameh Y (2016) Chemical and physical characteristics of optimal synthesised activated carbons from grass-derived sulfonated lignin versus commercial activated carbons. Microporous Mesoporous Mater 225:504–514. https://doi.org/10.1016/j.micromeso.2016.01.043
Alqadami AA, Naushad M, Abdalla MA, Ahamad T, Abdullah Alothman Z, Alshehri SM, Ghfar AA (2017) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: A study of adsorption parameters and interaction mechanism. J Clean Prod 156:426–436. https://doi.org/10.1016/J.JCLEPRO.2017.04.085
Arunachellan IC, Sypu VS, Kera NH, Pillay K, Maity A (2021) Flower-like structures of carbonaceous nanomaterials obtained from biomass for the treatment of copper ion-containing water and their reuse in organic transformations. J Environ Chem Eng 9:105242. https://doi.org/10.1016/J.JECE.2021.105242
Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and Interpretation of Adsorption Isotherms. J Chem 2017. https://doi.org/10.1155/2017/3039817
Bandara T, Xu J, Potter ID, Franks A, Chathurika JBAJ, Tang C (2020) Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere 254:126745. https://doi.org/10.1016/J.CHEMOSPHERE.2020.126745
Bouhamed F, Elouear Z, Bouzid J (2012) Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics. J Taiwan Inst Chem Eng 43:741–749. https://doi.org/10.1016/J.JTICE.2012.02.011
Boujelben N, Bouzid J, Elouear Z (2009) Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems. J Hazard Mater 163:376–382. https://doi.org/10.1016/J.JHAZMAT.2008.06.128
Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol Environ Saf 148:702–712. https://doi.org/10.1016/J.ECOENV.2017.11.034
Chai WS, Cheun JY, Kumar PS, Mubashir M, Majeed Z, Banat F, Ho SH, Show PL (2021) A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod 296:126589. https://doi.org/10.1016/J.JCLEPRO.2021.126589
Chen Y, Liu Y, Li Y, Chen Y, Wu Y, Li H, Wang S, Peng Z, Xu R, Zeng Z (2020) Novel Magnetic Pomelo Peel Biochar for Enhancing Pb(II) And Cu(II) Adsorption: Performance and Mechanism. Water Air Soil Pollut 231. https://doi.org/10.1007/s11270-020-04788-4
Cuong DV, Liu NL, Nguyen VA, Hou CH (2019) Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal. Sci Total Environ 692:844–853. https://doi.org/10.1016/J.SCITOTENV.2019.07.125
da Silva CMS, da Boit Martinello K, Lütke SF, Godinho M, Perondi D, Silva LFO, Dotto GL (2022a) Pyrolysis of grape bagasse to produce char for Cu(II) adsorption: a circular economy perspective. Biomass Convers. Biorefinery 1–18. https://doi.org/10.1007/s13399-022-02792-8
da Silva MD, da BoitMartinello K, Knani S, Lütke SF, Machado LMM, Manera C, Perondi D, Godinho M, Collazzo GC, Silva LFO, Dotto GL (2022b) Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene. Waste Manag 152:17–29. https://doi.org/10.1016/j.wasman.2022.07.024
Darweesh MA, Elgendy MY, Ayad MI, Ahmed AMM, Elsayed NMK, Hammad WA (2022) Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. South African J Chem Eng 40:10–20. https://doi.org/10.1016/J.SAJCE.2022.01.002
Demiral H, Güngör C (2016) Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J Clean Prod 124:103–113. https://doi.org/10.1016/J.JCLEPRO.2016.02.084
Diel JC, Franco DSP, Nunes IDS, Pereira HA, Moreira KS, Thiago TA, Foletto EL, Dotto GL (2021) Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix. J Environ Chem Eng 9:105178. https://doi.org/10.1016/J.JECE.2021.105178
Dotto GL, McKay G (2020) Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng 8:103988. https://doi.org/10.1016/J.JECE.2020.103988
Dou D, Wei D, Guan X, Liang Z, Lan L, Lan X, Liu P, Mo H, Lan P (2022) Adsorption of copper (II) and cadmium (II) ions by in situ doped nano-calcium carbonate high-intensity chitin hydrogels. J Hazard Mater 423:127137. https://doi.org/10.1016/J.JHAZMAT.2021.127137
Efrom CFS, de Souza PVD (2018) Citricultura do Rio Grande do Sul, 1st edn. Secretraria da Agricultura, Pecuária e Irrigação, Porto Alegre. p 304
Ettish MN, El-Sayyad GS, Elsayed MA, Abuzalat O (2021) Preparation and characterization of new adsorbent from Cinnamon waste by physical activation for removal of Chlorpyrifos. Environ Challenges 5:100208. https://doi.org/10.1016/J.ENVC.2021.100208
FAO (2020) Citrus Fruit Fresh and processed. Statistical bulletin, 2020
FAO F (2017) and agriculture organization of UN, 2017. Citrus Fruit Fresh and Processed Statistical Bulletin 2016
Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/J.CEJ.2009.09.013
Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471
Georgin J, Yamil YL, Franco DSP, Netto MS, Piccilli DGA, Perondi D, Silva LFO, Foletto EL, Dotto GL (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J Environ Chem Eng 9:105676. https://doi.org/10.1016/J.JECE.2021.105676
González-García P (2018) Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev 82:1393–1414. https://doi.org/10.1016/J.RSER.2017.04.117
Gupta S, Sireesha S, Sreedhar I, Patel CM, Anitha KL (2020) Latest trends in heavy metal removal from wastewater by biochar based sorbents. J Water Process Eng 38:101561. https://doi.org/10.1016/j.jwpe.2020.101561
Hashim MA, Tan HN, Chu KH (2000) Immobilized marine algal biomass for multiple cycles of copper adsorption and desorption. Sep Purif Technol 19:39–42. https://doi.org/10.1016/S1383-5866(99)00076-3
Hoang AT, Kumar S, Lichtfouse E, Cheng CK, Varma RS, Senthilkumar N, Phong Nguyen PQ, Nguyen XP (2022) Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. Chemosphere 302:134825. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134825
Hoang AT, Nguyen XP, Duong XQ, Huynh TT (2021) Sorbent-based devices for the removal of spilled oil from water: a review. Environ Sci Pollut Res 28:28876–28910. https://doi.org/10.1007/s11356-021-13775-z
Iamsaard K, Weng CH, Yen LT, Tzeng JH, Poonpakdee C, Lin YT (2022) Adsorption of metal on pineapple leaf biochar: Key affecting factors, mechanism identification, and regeneration evaluation. Bioresour Technol 344:126131. https://doi.org/10.1016/j.biortech.2021.126131
Jaria G, Calisto V, Esteves VI, Otero M (2022) Overview of relevant economic and environmental aspects of waste-based activated carbons aimed at adsorptive water treatments. J Clean Prod 344:130984. https://doi.org/10.1016/J.JCLEPRO.2022.130984
Jin Y, Zhang M, Jin Z, Wang G, Li R, Zhang X, Liu X, Qu J, Wang H (2021) Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution. Environ Res 196. https://doi.org/10.1016/j.envres.2020.110323
Lam SS, Liew RK, Wong YM, Yek PNY, Ma NL, Lee CL, Chase HA (2017) Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J Clean Prod 162:1376–1387. https://doi.org/10.1016/J.JCLEPRO.2017.06.131
Katiyar R, Patel AK, Nguyen TB, Singhania RR, Chen CW, Dong C. Di (2021) Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresour Technol 328:124829. https://doi.org/10.1016/j.biortech.2021.124829
Kaur M, Sharma P, Kumari S (2019) Equilibrium studies for copper removal from aqueous solution using nanoadsorbent synthesized from rice husk. SN Appl Sci 1:1–9. https://doi.org/10.1007/s42452-019-1024-0
Kim BS, Lee HW, Park SH, Baek K, Jeon JK, Cho HJ, Jung SC, Kim SC, Park YK (2016) Removal of Cu2+ by biochars derived from green macroalgae. Environ Sci Pollut Res 23:985–994. https://doi.org/10.1007/s11356-015-4368-z
Labidi A, Salaberria AM, Fernandes SCM, Labidi J, Abderrabba M (2016) Adsorption of copper on chitin-based materials: Kinetic and thermodynamic studies. J Taiwan Inst Chem Eng 65:140–148. https://doi.org/10.1016/J.JTICE.2016.04.030
Labied R, Benturki O, EddineHamitouche AY, Donnot A (2018) Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study. Adsorpt Sci Technol 36:1066–1099. https://doi.org/10.1177/0263617417750739
Langmuir I (1917) The constitution and fundamental properties of solids and liquids. J Am Chem Soc II
Liew RK, Chong MY, Osazuwa OU, Nam WL, Phang XY, Su MH, Cheng CK, Chong CT, Lam SS (2018) Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Res Chem Intermed 44:3849–3865. https://doi.org/10.1007/s11164-018-3388-y
Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048
Lima EC, Sher F, Saeb MR, Abatal M, Seliem MK (2021) Comments on “Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant, Journal of Molecular Liquids 322 (2021) 114980.” J Mol. Liq 334:116542. https://doi.org/10.1016/J.MOLLIQ.2021.116542
Liu J, Beckerman J (2022) Application of sustainable biosorbents from hemp for remediation copper(II)-containing wastewater. J Environ Chem Eng 10:107494. https://doi.org/10.1016/J.JECE.2022.107494
Madhava Rao M, Ramesh A, Purna Chandra Rao G, Seshaiah K (2006) Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J Hazard Mater 129:123–129. https://doi.org/10.1016/J.JHAZMAT.2005.08.018
Mahdi Z, El Hanandeh A, Yu QJ (2019) Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions. J Environ Chem Eng 7:103379. https://doi.org/10.1016/J.JECE.2019.103379
Netto MS, Georgin J, Franco DSP, Mallmann ES, Foletto EL, Godinho M, Pinto D, Dotto GL (2022) Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. Environ Sci Pollut Res 29:3672–3685. https://doi.org/10.1007/s11356-021-15366-4
Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenerg 115:64–73. https://doi.org/10.1016/J.BIOMBIOE.2018.04.015
Panwar D, Panesar PS, Chopra HK (2021a) Recent Trends on the Valorization Strategies for the Management of Citrus By-products. Food Rev Int 37:91–120. https://doi.org/10.1080/87559129.2019.1695834
Panwar D, Saini A, Panesar PS, Chopra HK (2021b) Unraveling the scientific perspectives of citrus by-products utilization: Progress towards circular economy. Trends Food Sci Technol 111:549–562. https://doi.org/10.1016/J.TIFS.2021.03.01
Perondi D, Poletto P, Restelatto D, Manera C, Silva JP, Junges J, Collazzo GC, Dettmer A, Godinho M, Vilela ACF (2017) Steam gasification of poultry litter biochar for bio-syngas production. Proc Saf Environ Prot 109:478–488. https://doi.org/10.1016/j.psep.2017.04.029
Phuengphai P, Singjanusong T, Kheangkhun N, Wattanakornsiri A (2021) Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Sci Eng 14:286–294. https://doi.org/10.1016/J.WSE.2021.08.003
Prabu D, Parthiban R, Senthil Kumar P, Kumari N, Saikia P (2016) Adsorption of copper ions onto nano-scale zero-valent iron impregnated cashew nut shell. Desalin Water Treat 57:6487–6502. https://doi.org/10.1080/19443994.2015.1007488
Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10:716–724. https://doi.org/10.1631/jzus.A0820524
Rajahmundry GK, Garlapati C, Kumar PS, Alwi RS, Vo DVN (2021) Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 276:130176. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130176
Ren T, Chen N, Wan Mahari WA, Xu C, Feng H, Ji X, Yin Q, Chen P, Zhu S, Liu H, Liu G, Li L, Lam SS (2021) Biochar for cadmium pollution mitigation and stress resistance in tobacco growth. Environ Res 192:110273. https://doi.org/10.1016/J.ENVRES.2020.110273
Rozada F, Otero M, Morán A, García AI (2008) Adsorption of heavy metals onto sewage sludge-derived materials. Bioresour Technol 99:6332–6338. https://doi.org/10.1016/J.BIORTECH.2007.12.015
Sabela MI, Kunene K, Kanchi S, Xhakaza NM, Bathinapatla A, Mdluli P, Sharma D, Bisetty K (2019) Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: An approach to equilibrium and kinetic study. Arab J Chem 12:4331–4339. https://doi.org/10.1016/J.ARABJC.2016.06.001
Sajjadi SA, Meknati A, Lima EC, Dotto GL, Mendoza-Castillo DI, Anastopoulos I, Alakhras F, Unuabonah EI, Singh P, Hosseini-Bandegharaei A (2019) A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. J Environ Manage 236:34–44. https://doi.org/10.1016/J.JENVMAN.2019.01.087
Shakoor MB, Ye ZL, Chen S (2021) Engineered biochars for recovering phosphate and ammonium from wastewater: A review. Sci Total Environ 779:146240. https://doi.org/10.1016/J.SCITOTENV.2021.146240
Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495
Soliman NK, Moustafa AF (2020) Industrial solid waste for heavy metals adsorption features and challenges; a review. J Mater Res Technol 9:10235–10253. https://doi.org/10.1016/J.JMRT.2020.07.045
Streit AFM, Collazzo GC, Druzian SP, Verdi RS, Foletto EL, Oliveira LFS, Dotto GL (2021) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere 262:128322. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128322
Suri S, Singh A, Nema PK (2022) Current applications of citrus fruit processing waste: A scientific outlook. Appl Food Res. 2:100050. https://doi.org/10.1016/J.AFRES.2022.100050
Thue PS, Umpierres CS, Lima EC, Lima DR, Machado FM, dos Reis GS, da Silva RS, Pavan FA, Tran HN (2020) Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. J Hazard Mater 398:122903. https://doi.org/10.1016/j.jhazmat.2020.122903
Trikkaliotis DG, Christoforidis AK, Mitropoulos AC, Kyzas GZ (2020) Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene glycol). Carbohydr Polym 234:115890. https://doi.org/10.1016/J.CARBPOL.2020.115890
Umpierres CS, Thue PS, Lima EC, do Reis GS, de Brum IAS, Alencar WSD, Dias SLP, Dotto GL (2017) Microwave-activated carbons from tucumã (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions. Environ Technol (United Kingdom) 39:1173–1187. https://doi.org/10.1080/09593330.2017.1323957
Valério Filho A, Tholozan LV, da Silva EO, Meili L, de Almeida ARF, da Rosa GS (2022) Perspectives of the reuse of agricultural wastes from the Rio Grande do Sul, Brazil, as new adsorbent materials. Biomass-Derived Mater Environ Appl 243–266.https://doi.org/10.1016/B978-0-323-91914-2.00014-3
Wan Mahari WA, Waiho K, Azwar E, Fazhan H, Peng W, Ishak SD, Tabatabaei M, Yek PNY, Almomani F, Aghbashlo M, Lam SS (2022) A state-of-the-art review on producing engineered biochar from shellfish waste and its application in aquaculture wastewater treatment. Chemosphere 288:132559. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132559
Wang RZ, Huang DL, Liu YG, Zhang C, Lai C, Wang X, Zeng GM, Zhang Q, Gong XM, Xu P (2020) Synergistic removal of copper and tetracycline from aqueous solution by steam-activated bamboo-derived biochar. J Hazard Mater 384:121470. https://doi.org/10.1016/J.JHAZMAT.2019.121470
Weng CH, Tsai CZ, Chu SH, Sharma YC (2007) Adsorption characteristics of copper(II) onto spent activated clay. Sep Purif Technol 54:187–197. https://doi.org/10.1016/j.seppur.2006.09.009
Yang F, Zhang S, Sun Y, Cheng K, Li J, Tsang DCW (2018) Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresour Technol 265:490–497. https://doi.org/10.1016/J.BIORTECH.2018.06.029 Article CAS Google Scholar
Zema DA, Calabrò PS, Folino A, Tamburino V, Zappia G, Zimbone SM (2018) Valorisation of citrus processing waste: A review. Waste Manag 80:252–273. https://doi.org/10.1016/J.WASMAN.2018.09.024
Zhang P, Zhang X, Yuan X, Xie R, Han L (2021) Characteristics, adsorption behaviors, Cu(II) adsorption mechanisms by cow manure biochar derived at various pyrolysis temperatures. Bioresour Technol 331:125013. https://doi.org/10.1016/j.biortech.2021.125013
Zhang W, Song J, He Q, Wang H, Lyu W, Feng H, Xiong W, Guo W, Wu J, Chen L (2020) Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. J Hazard Mater 384:121445. https://doi.org/10.1016/J.JHAZMAT.2019.121445
Zhu B, Fan T, Zhang D (2008) Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J Hazard Mater 153:300–308. https://doi.org/10.1016/J.JHAZMAT.2007.08.050
dc.relation.citationendpage.spa.fl_str_mv 63677
dc.relation.citationstartpage.spa.fl_str_mv 63661
dc.relation.citationvolume.spa.fl_str_mv 30
dc.rights.eng.fl_str_mv © 2023 Springer Nature
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2023 Springer Nature
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 1 página
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Science + Business Media
dc.publisher.place.spa.fl_str_mv Germany
dc.source.spa.fl_str_mv https://link.springer.com/article/10.1007/s11356-023-26860-2
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/0b746d4c-3440-4ec6-b7bf-278beded7b37/download
https://repositorio.cuc.edu.co/bitstreams/3f43e668-ee9a-4e2c-8b3d-36afa641b6e9/download
https://repositorio.cuc.edu.co/bitstreams/025a76d4-5533-4164-b24e-b2c8bfa15469/download
https://repositorio.cuc.edu.co/bitstreams/d9280bd6-e75e-461e-89b2-0e9798e273c0/download
bitstream.checksum.fl_str_mv 6d925cf6a58a1f542a0b5b58e8c14e68
2f9959eaf5b71fae44bbf9ec84150c7a
8f38d51939dd07b5573f676e504dc587
76b1b0280020763e24d2393c78b90b0f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166821841207296
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2023 Springer Naturehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfda Silva, Mariele D.Schnorr, Carlos EduardoFrantz Lütke, SabrinaSilva Oliveira, Luis FelipeManera, ChristianPerondi, DanieleGodinho, MarceloCollazzo, Gabriela C.Dotto, Guilherme Luiz2023-09-12T18:35:33Z20242023-09-12T18:35:33Z2023da Silva, M.D., Schnorr, C., Lütke, S.F. et al. Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorption. Environ Sci Pollut Res 30, 63661–63677 (2023). https://doi.org/10.1007/s11356-023-26860-20944-1344https://hdl.handle.net/11323/1048110.1007/s11356-023-26860-21614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Due to its toxicity, the presence of Cu(II) ions released in aquatic environments presents a serious threat to the environment and human health. In search of sustainable and low-cost alternatives, there are citrus fruit residues, which are generated in large quantities by the juice industries and can be used to produce activated carbons. Therefore, the physical route was investigated for producing activated carbons to reuse citrus wastes. In this work, eight activated carbons were developed, varying the precursor (orange peel-OP, mandarine peel-MP, rangpur lime peel-RLP, and sweet lime peel-SLP) and the activating agent (CO2 and H2O) to remove Cu(II) ions of the aqueous medium. Results revealed promising activated carbons with a micro-mesoporous structure, a specific surface area of around 400 m2 g–1, and a pore volume of around 0.25 cm3 g–1. In addition, Cu (II) adsorption was favored at pH 5.5. The kinetic study showed that the equilibrium was reached within 60 min removing about 80% of Cu(II) ions. The Sips model was the most suitable for the equilibrium data, providing maximum adsorption capacities (qmS) values of 69.69, 70.27, 88.04, 67.83 mg g–1 for activated carbons (AC-CO2) from OP, MP, RLP, and SLP, respectively. The thermodynamic behavior showed that the adsorption process of Cu(II) ions was spontaneous, favorable, and endothermic. It was suggested that the mechanism was controlled by surface complexation and Cu2+-π interaction. Desorption was possible with an HCl solution (0.5 mol L–1). From the results obtained in this work, it is possible to infer that citrus residues could be successfully converted into efficient adsorbents to remove Cu(II) ions from aqueous solutions.1 páginaapplication/pdfengSpringer Science + Business MediaGermanyhttps://link.springer.com/article/10.1007/s11356-023-26860-2Citrus fruit residues as alternative precursors to developing H2O and CO2 activated carbons and its application for Cu(II) adsorptionArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceEnvironmental Science and Pollution ResearchAhmad Z, Gao B, Mosa A, Yu H, Yin X, Bashir A, Ghoveisi H, Wang S (2018) Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J Clean Prod 180:437–449. https://doi.org/10.1016/j.jclepro.2018.01.133Al-Lagtah NMA, Al-Muhtaseb AH, Ahmad MNM, Salameh Y (2016) Chemical and physical characteristics of optimal synthesised activated carbons from grass-derived sulfonated lignin versus commercial activated carbons. Microporous Mesoporous Mater 225:504–514. https://doi.org/10.1016/j.micromeso.2016.01.043Alqadami AA, Naushad M, Abdalla MA, Ahamad T, Abdullah Alothman Z, Alshehri SM, Ghfar AA (2017) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: A study of adsorption parameters and interaction mechanism. J Clean Prod 156:426–436. https://doi.org/10.1016/J.JCLEPRO.2017.04.085Arunachellan IC, Sypu VS, Kera NH, Pillay K, Maity A (2021) Flower-like structures of carbonaceous nanomaterials obtained from biomass for the treatment of copper ion-containing water and their reuse in organic transformations. J Environ Chem Eng 9:105242. https://doi.org/10.1016/J.JECE.2021.105242Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and Interpretation of Adsorption Isotherms. J Chem 2017. https://doi.org/10.1155/2017/3039817Bandara T, Xu J, Potter ID, Franks A, Chathurika JBAJ, Tang C (2020) Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere 254:126745. https://doi.org/10.1016/J.CHEMOSPHERE.2020.126745Bouhamed F, Elouear Z, Bouzid J (2012) Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics. J Taiwan Inst Chem Eng 43:741–749. https://doi.org/10.1016/J.JTICE.2012.02.011Boujelben N, Bouzid J, Elouear Z (2009) Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems. J Hazard Mater 163:376–382. https://doi.org/10.1016/J.JHAZMAT.2008.06.128Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol Environ Saf 148:702–712. https://doi.org/10.1016/J.ECOENV.2017.11.034Chai WS, Cheun JY, Kumar PS, Mubashir M, Majeed Z, Banat F, Ho SH, Show PL (2021) A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod 296:126589. https://doi.org/10.1016/J.JCLEPRO.2021.126589Chen Y, Liu Y, Li Y, Chen Y, Wu Y, Li H, Wang S, Peng Z, Xu R, Zeng Z (2020) Novel Magnetic Pomelo Peel Biochar for Enhancing Pb(II) And Cu(II) Adsorption: Performance and Mechanism. Water Air Soil Pollut 231. https://doi.org/10.1007/s11270-020-04788-4Cuong DV, Liu NL, Nguyen VA, Hou CH (2019) Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal. Sci Total Environ 692:844–853. https://doi.org/10.1016/J.SCITOTENV.2019.07.125da Silva CMS, da Boit Martinello K, Lütke SF, Godinho M, Perondi D, Silva LFO, Dotto GL (2022a) Pyrolysis of grape bagasse to produce char for Cu(II) adsorption: a circular economy perspective. Biomass Convers. Biorefinery 1–18. https://doi.org/10.1007/s13399-022-02792-8da Silva MD, da BoitMartinello K, Knani S, Lütke SF, Machado LMM, Manera C, Perondi D, Godinho M, Collazzo GC, Silva LFO, Dotto GL (2022b) Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene. Waste Manag 152:17–29. https://doi.org/10.1016/j.wasman.2022.07.024Darweesh MA, Elgendy MY, Ayad MI, Ahmed AMM, Elsayed NMK, Hammad WA (2022) Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. South African J Chem Eng 40:10–20. https://doi.org/10.1016/J.SAJCE.2022.01.002Demiral H, Güngör C (2016) Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J Clean Prod 124:103–113. https://doi.org/10.1016/J.JCLEPRO.2016.02.084Diel JC, Franco DSP, Nunes IDS, Pereira HA, Moreira KS, Thiago TA, Foletto EL, Dotto GL (2021) Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix. J Environ Chem Eng 9:105178. https://doi.org/10.1016/J.JECE.2021.105178Dotto GL, McKay G (2020) Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng 8:103988. https://doi.org/10.1016/J.JECE.2020.103988Dou D, Wei D, Guan X, Liang Z, Lan L, Lan X, Liu P, Mo H, Lan P (2022) Adsorption of copper (II) and cadmium (II) ions by in situ doped nano-calcium carbonate high-intensity chitin hydrogels. J Hazard Mater 423:127137. https://doi.org/10.1016/J.JHAZMAT.2021.127137Efrom CFS, de Souza PVD (2018) Citricultura do Rio Grande do Sul, 1st edn. Secretraria da Agricultura, Pecuária e Irrigação, Porto Alegre. p 304Ettish MN, El-Sayyad GS, Elsayed MA, Abuzalat O (2021) Preparation and characterization of new adsorbent from Cinnamon waste by physical activation for removal of Chlorpyrifos. Environ Challenges 5:100208. https://doi.org/10.1016/J.ENVC.2021.100208FAO (2020) Citrus Fruit Fresh and processed. Statistical bulletin, 2020FAO F (2017) and agriculture organization of UN, 2017. Citrus Fruit Fresh and Processed Statistical Bulletin 2016Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/J.CEJ.2009.09.013Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471Georgin J, Yamil YL, Franco DSP, Netto MS, Piccilli DGA, Perondi D, Silva LFO, Foletto EL, Dotto GL (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J Environ Chem Eng 9:105676. https://doi.org/10.1016/J.JECE.2021.105676González-García P (2018) Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev 82:1393–1414. https://doi.org/10.1016/J.RSER.2017.04.117Gupta S, Sireesha S, Sreedhar I, Patel CM, Anitha KL (2020) Latest trends in heavy metal removal from wastewater by biochar based sorbents. J Water Process Eng 38:101561. https://doi.org/10.1016/j.jwpe.2020.101561Hashim MA, Tan HN, Chu KH (2000) Immobilized marine algal biomass for multiple cycles of copper adsorption and desorption. Sep Purif Technol 19:39–42. https://doi.org/10.1016/S1383-5866(99)00076-3Hoang AT, Kumar S, Lichtfouse E, Cheng CK, Varma RS, Senthilkumar N, Phong Nguyen PQ, Nguyen XP (2022) Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. Chemosphere 302:134825. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134825Hoang AT, Nguyen XP, Duong XQ, Huynh TT (2021) Sorbent-based devices for the removal of spilled oil from water: a review. Environ Sci Pollut Res 28:28876–28910. https://doi.org/10.1007/s11356-021-13775-zIamsaard K, Weng CH, Yen LT, Tzeng JH, Poonpakdee C, Lin YT (2022) Adsorption of metal on pineapple leaf biochar: Key affecting factors, mechanism identification, and regeneration evaluation. Bioresour Technol 344:126131. https://doi.org/10.1016/j.biortech.2021.126131Jaria G, Calisto V, Esteves VI, Otero M (2022) Overview of relevant economic and environmental aspects of waste-based activated carbons aimed at adsorptive water treatments. J Clean Prod 344:130984. https://doi.org/10.1016/J.JCLEPRO.2022.130984Jin Y, Zhang M, Jin Z, Wang G, Li R, Zhang X, Liu X, Qu J, Wang H (2021) Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution. Environ Res 196. https://doi.org/10.1016/j.envres.2020.110323Lam SS, Liew RK, Wong YM, Yek PNY, Ma NL, Lee CL, Chase HA (2017) Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J Clean Prod 162:1376–1387. https://doi.org/10.1016/J.JCLEPRO.2017.06.131Katiyar R, Patel AK, Nguyen TB, Singhania RR, Chen CW, Dong C. Di (2021) Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresour Technol 328:124829. https://doi.org/10.1016/j.biortech.2021.124829Kaur M, Sharma P, Kumari S (2019) Equilibrium studies for copper removal from aqueous solution using nanoadsorbent synthesized from rice husk. SN Appl Sci 1:1–9. https://doi.org/10.1007/s42452-019-1024-0Kim BS, Lee HW, Park SH, Baek K, Jeon JK, Cho HJ, Jung SC, Kim SC, Park YK (2016) Removal of Cu2+ by biochars derived from green macroalgae. Environ Sci Pollut Res 23:985–994. https://doi.org/10.1007/s11356-015-4368-zLabidi A, Salaberria AM, Fernandes SCM, Labidi J, Abderrabba M (2016) Adsorption of copper on chitin-based materials: Kinetic and thermodynamic studies. J Taiwan Inst Chem Eng 65:140–148. https://doi.org/10.1016/J.JTICE.2016.04.030Labied R, Benturki O, EddineHamitouche AY, Donnot A (2018) Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study. Adsorpt Sci Technol 36:1066–1099. https://doi.org/10.1177/0263617417750739Langmuir I (1917) The constitution and fundamental properties of solids and liquids. J Am Chem Soc IILiew RK, Chong MY, Osazuwa OU, Nam WL, Phang XY, Su MH, Cheng CK, Chong CT, Lam SS (2018) Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Res Chem Intermed 44:3849–3865. https://doi.org/10.1007/s11164-018-3388-yLima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048Lima EC, Sher F, Saeb MR, Abatal M, Seliem MK (2021) Comments on “Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant, Journal of Molecular Liquids 322 (2021) 114980.” J Mol. Liq 334:116542. https://doi.org/10.1016/J.MOLLIQ.2021.116542Liu J, Beckerman J (2022) Application of sustainable biosorbents from hemp for remediation copper(II)-containing wastewater. J Environ Chem Eng 10:107494. https://doi.org/10.1016/J.JECE.2022.107494Madhava Rao M, Ramesh A, Purna Chandra Rao G, Seshaiah K (2006) Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J Hazard Mater 129:123–129. https://doi.org/10.1016/J.JHAZMAT.2005.08.018Mahdi Z, El Hanandeh A, Yu QJ (2019) Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions. J Environ Chem Eng 7:103379. https://doi.org/10.1016/J.JECE.2019.103379Netto MS, Georgin J, Franco DSP, Mallmann ES, Foletto EL, Godinho M, Pinto D, Dotto GL (2022) Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. Environ Sci Pollut Res 29:3672–3685. https://doi.org/10.1007/s11356-021-15366-4Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenerg 115:64–73. https://doi.org/10.1016/J.BIOMBIOE.2018.04.015Panwar D, Panesar PS, Chopra HK (2021a) Recent Trends on the Valorization Strategies for the Management of Citrus By-products. Food Rev Int 37:91–120. https://doi.org/10.1080/87559129.2019.1695834Panwar D, Saini A, Panesar PS, Chopra HK (2021b) Unraveling the scientific perspectives of citrus by-products utilization: Progress towards circular economy. Trends Food Sci Technol 111:549–562. https://doi.org/10.1016/J.TIFS.2021.03.01Perondi D, Poletto P, Restelatto D, Manera C, Silva JP, Junges J, Collazzo GC, Dettmer A, Godinho M, Vilela ACF (2017) Steam gasification of poultry litter biochar for bio-syngas production. Proc Saf Environ Prot 109:478–488. https://doi.org/10.1016/j.psep.2017.04.029Phuengphai P, Singjanusong T, Kheangkhun N, Wattanakornsiri A (2021) Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Sci Eng 14:286–294. https://doi.org/10.1016/J.WSE.2021.08.003Prabu D, Parthiban R, Senthil Kumar P, Kumari N, Saikia P (2016) Adsorption of copper ions onto nano-scale zero-valent iron impregnated cashew nut shell. Desalin Water Treat 57:6487–6502. https://doi.org/10.1080/19443994.2015.1007488Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10:716–724. https://doi.org/10.1631/jzus.A0820524Rajahmundry GK, Garlapati C, Kumar PS, Alwi RS, Vo DVN (2021) Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 276:130176. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130176Ren T, Chen N, Wan Mahari WA, Xu C, Feng H, Ji X, Yin Q, Chen P, Zhu S, Liu H, Liu G, Li L, Lam SS (2021) Biochar for cadmium pollution mitigation and stress resistance in tobacco growth. Environ Res 192:110273. https://doi.org/10.1016/J.ENVRES.2020.110273Rozada F, Otero M, Morán A, García AI (2008) Adsorption of heavy metals onto sewage sludge-derived materials. Bioresour Technol 99:6332–6338. https://doi.org/10.1016/J.BIORTECH.2007.12.015Sabela MI, Kunene K, Kanchi S, Xhakaza NM, Bathinapatla A, Mdluli P, Sharma D, Bisetty K (2019) Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: An approach to equilibrium and kinetic study. Arab J Chem 12:4331–4339. https://doi.org/10.1016/J.ARABJC.2016.06.001Sajjadi SA, Meknati A, Lima EC, Dotto GL, Mendoza-Castillo DI, Anastopoulos I, Alakhras F, Unuabonah EI, Singh P, Hosseini-Bandegharaei A (2019) A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. J Environ Manage 236:34–44. https://doi.org/10.1016/J.JENVMAN.2019.01.087Shakoor MB, Ye ZL, Chen S (2021) Engineered biochars for recovering phosphate and ammonium from wastewater: A review. Sci Total Environ 779:146240. https://doi.org/10.1016/J.SCITOTENV.2021.146240Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495Soliman NK, Moustafa AF (2020) Industrial solid waste for heavy metals adsorption features and challenges; a review. J Mater Res Technol 9:10235–10253. https://doi.org/10.1016/J.JMRT.2020.07.045Streit AFM, Collazzo GC, Druzian SP, Verdi RS, Foletto EL, Oliveira LFS, Dotto GL (2021) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere 262:128322. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128322Suri S, Singh A, Nema PK (2022) Current applications of citrus fruit processing waste: A scientific outlook. Appl Food Res. 2:100050. https://doi.org/10.1016/J.AFRES.2022.100050Thue PS, Umpierres CS, Lima EC, Lima DR, Machado FM, dos Reis GS, da Silva RS, Pavan FA, Tran HN (2020) Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. J Hazard Mater 398:122903. https://doi.org/10.1016/j.jhazmat.2020.122903Trikkaliotis DG, Christoforidis AK, Mitropoulos AC, Kyzas GZ (2020) Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene glycol). Carbohydr Polym 234:115890. https://doi.org/10.1016/J.CARBPOL.2020.115890Umpierres CS, Thue PS, Lima EC, do Reis GS, de Brum IAS, Alencar WSD, Dias SLP, Dotto GL (2017) Microwave-activated carbons from tucumã (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions. Environ Technol (United Kingdom) 39:1173–1187. https://doi.org/10.1080/09593330.2017.1323957Valério Filho A, Tholozan LV, da Silva EO, Meili L, de Almeida ARF, da Rosa GS (2022) Perspectives of the reuse of agricultural wastes from the Rio Grande do Sul, Brazil, as new adsorbent materials. Biomass-Derived Mater Environ Appl 243–266.https://doi.org/10.1016/B978-0-323-91914-2.00014-3Wan Mahari WA, Waiho K, Azwar E, Fazhan H, Peng W, Ishak SD, Tabatabaei M, Yek PNY, Almomani F, Aghbashlo M, Lam SS (2022) A state-of-the-art review on producing engineered biochar from shellfish waste and its application in aquaculture wastewater treatment. Chemosphere 288:132559. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132559Wang RZ, Huang DL, Liu YG, Zhang C, Lai C, Wang X, Zeng GM, Zhang Q, Gong XM, Xu P (2020) Synergistic removal of copper and tetracycline from aqueous solution by steam-activated bamboo-derived biochar. J Hazard Mater 384:121470. https://doi.org/10.1016/J.JHAZMAT.2019.121470Weng CH, Tsai CZ, Chu SH, Sharma YC (2007) Adsorption characteristics of copper(II) onto spent activated clay. Sep Purif Technol 54:187–197. https://doi.org/10.1016/j.seppur.2006.09.009Yang F, Zhang S, Sun Y, Cheng K, Li J, Tsang DCW (2018) Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresour Technol 265:490–497. https://doi.org/10.1016/J.BIORTECH.2018.06.029 Article CAS Google ScholarZema DA, Calabrò PS, Folino A, Tamburino V, Zappia G, Zimbone SM (2018) Valorisation of citrus processing waste: A review. Waste Manag 80:252–273. https://doi.org/10.1016/J.WASMAN.2018.09.024Zhang P, Zhang X, Yuan X, Xie R, Han L (2021) Characteristics, adsorption behaviors, Cu(II) adsorption mechanisms by cow manure biochar derived at various pyrolysis temperatures. Bioresour Technol 331:125013. https://doi.org/10.1016/j.biortech.2021.125013Zhang W, Song J, He Q, Wang H, Lyu W, Feng H, Xiong W, Guo W, Wu J, Chen L (2020) Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. J Hazard Mater 384:121445. https://doi.org/10.1016/J.JHAZMAT.2019.121445Zhu B, Fan T, Zhang D (2008) Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J Hazard Mater 153:300–308. https://doi.org/10.1016/J.JHAZMAT.2007.08.050636776366130Citrus wastesCitrus wastesActivating agentsSustainable adsorbentsPrecursorsPublicationORIGINALCitrus fruit residues as alternative precursors to developing H2O and CO2.pdfCitrus fruit residues as alternative precursors to developing H2O and CO2.pdfArtículoapplication/pdf62236https://repositorio.cuc.edu.co/bitstreams/0b746d4c-3440-4ec6-b7bf-278beded7b37/download6d925cf6a58a1f542a0b5b58e8c14e68MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/3f43e668-ee9a-4e2c-8b3d-36afa641b6e9/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTCitrus fruit residues as alternative precursors to developing H2O and CO2.pdf.txtCitrus fruit residues as alternative precursors to developing H2O and CO2.pdf.txtExtracted texttext/plain2144https://repositorio.cuc.edu.co/bitstreams/025a76d4-5533-4164-b24e-b2c8bfa15469/download8f38d51939dd07b5573f676e504dc587MD53THUMBNAILCitrus fruit residues as alternative precursors to developing H2O and CO2.pdf.jpgCitrus fruit residues as alternative precursors to developing H2O and CO2.pdf.jpgGenerated Thumbnailimage/jpeg13285https://repositorio.cuc.edu.co/bitstreams/d9280bd6-e75e-461e-89b2-0e9798e273c0/download76b1b0280020763e24d2393c78b90b0fMD5411323/10481oai:repositorio.cuc.edu.co:11323/104812024-09-17 14:14:06.126https://creativecommons.org/licenses/by/4.0/© 2023 Springer Natureopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=