Fuzzy logic applied to the performance evaluation. Honduran coffee sector case

Every day organizations pay more attention to Human Resources Management, because this human factor is preponderant in the results of it. An important policy is the Performance Evaluation (ED), since it allows the control and monitoring of management indicators, both individual and by process. To an...

Full description

Autores:
Varela Izquierdo, Noel
Lezama Pineda, Omar Bonerge
Dorta Gómez, Rafael
Viloria, Amelec
Deras, Ivan
Hernández Fernández, Lissette
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/3325
Acceso en línea:
https://hdl.handle.net/11323/3325
https://repositorio.cuc.edu.co/
Palabra clave:
Fuzzy logic
Performance evaluatio
Lógica difusa
Evaluación de desempeño
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_2412a85b3b053199fa367addd28c266a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/3325
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Fuzzy logic applied to the performance evaluation. Honduran coffee sector case
dc.title.translated.spa.fl_str_mv Lógica difusa aplicada a la evaluación de desempeño. caso del sector cafetalero Hondureño.
title Fuzzy logic applied to the performance evaluation. Honduran coffee sector case
spellingShingle Fuzzy logic applied to the performance evaluation. Honduran coffee sector case
Fuzzy logic
Performance evaluatio
Lógica difusa
Evaluación de desempeño
title_short Fuzzy logic applied to the performance evaluation. Honduran coffee sector case
title_full Fuzzy logic applied to the performance evaluation. Honduran coffee sector case
title_fullStr Fuzzy logic applied to the performance evaluation. Honduran coffee sector case
title_full_unstemmed Fuzzy logic applied to the performance evaluation. Honduran coffee sector case
title_sort Fuzzy logic applied to the performance evaluation. Honduran coffee sector case
dc.creator.fl_str_mv Varela Izquierdo, Noel
Lezama Pineda, Omar Bonerge
Dorta Gómez, Rafael
Viloria, Amelec
Deras, Ivan
Hernández Fernández, Lissette
dc.contributor.author.spa.fl_str_mv Varela Izquierdo, Noel
Lezama Pineda, Omar Bonerge
Dorta Gómez, Rafael
Viloria, Amelec
Deras, Ivan
Hernández Fernández, Lissette
dc.subject.spa.fl_str_mv Fuzzy logic
Performance evaluatio
Lógica difusa
Evaluación de desempeño
topic Fuzzy logic
Performance evaluatio
Lógica difusa
Evaluación de desempeño
description Every day organizations pay more attention to Human Resources Management, because this human factor is preponderant in the results of it. An important policy is the Performance Evaluation (ED), since it allows the control and monitoring of management indicators, both individual and by process. To analyze the results, decision making in many organizations is done in a subjective manner and in consequence it brings serious problems to them. Taking into account this problem, it is decided to design and apply diffuse mathematical procedures and tools to reduce subjectivity and uncertainty in decision-making, creating work algorithms for this policy, which includes multifactorial weights and analysis with measurement indicators that they allow tangible and reliable results. Statistical techniques (ANOVA) are also used to establish relationships between work groups and learn about best practices.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-06-16
dc.date.accessioned.none.fl_str_mv 2019-05-14T13:26:08Z
dc.date.available.none.fl_str_mv 2019-05-14T13:26:08Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.isbn.spa.fl_str_mv 978-331993817-2
dc.identifier.issn.spa.fl_str_mv 03029743
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/3325
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 978-331993817-2
03029743
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/3325
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv DOI: 10.1007/978-3-319-93818-9_16
dc.relation.references.spa.fl_str_mv Bernoulli, J.: Ars conjectandi (The art of conjecture). Impensis Thurnisiorum, Basel, Switzerland (1713) Papoulis, A., Pillai, S.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York (1965) Tizhoosh, R.: Opposition-based learning: a new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, pp. 695–701 (2005) Xu, Q.Z., Wang, L., Wang, N., Hei, X.H., Zhao, L.: A review of opposition-based learning from 2005 to 2012. Eng. Appl. Artif. Intell. 29(1), 1–12 (2014) Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Quasi-oppositional differential evolution. In: IEEE Congress on Evolutionary Computation, Singapore, pp. 2229–2236 (2007) Ergezer, M., Simon, D., Du, D.W.: Oppositional biogeography-based optimization. In: IEEE International Conference on Systems, Man and Cybernetics, San Antonio, USA, pp. 1009– 1014 (2009) Rahnamayan, S., Wang, G.G.: Center-based sampling for population-based algorithms. In: IEEE Congress on Evolutionary Computation, pp. 933–938. Trondheim, Norway (2009) Wang, H., Wu, Z.J., Liu, Y., Wang, J., Jiang, D.Z., Chen, L.L.: Space transformation search: a new evolutionary technique. In: ACM/SIGEVO Summit on Genetic and Evolutionary Computation, Shanghai, China, pp. 537–544 (2009) Xu, Q.Z., Wang, L., He, B.M., Wang, N.: Modified opposition-based differential evolution for function optimization. J. Comput. Inf. Syst. 7(5), 1582–1591 (2011) Xu, H.P., Erdbrink, C.D., Krzhizhanovskaya, V.V.: How to speed up optimization? opposite-center learning and its application to differential evolution. Procedia Comput. Sci. 51(1), 805–814 (2015) Ergezer, M., Simon, D.: Mathematical and experimental analyses of oppositional algorithms. IEEE Trans. Cybern. 44(11), 2178–2189 (2014) Rahnamayan, S., Wang, G.G., Ventresca, M.: An intuitive distance-based explanation of opposition-based sampling. Appl. Soft Comput. 12(9), 2828–2839 (2012)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Springer Verlag
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/817cbca4-1fff-49f4-abd5-dd6a4289e20d/download
https://repositorio.cuc.edu.co/bitstreams/b200c639-00a3-423f-a4c5-fa9f606b0418/download
https://repositorio.cuc.edu.co/bitstreams/37fd3715-158d-4a02-a9ee-27d26ebcf2dc/download
https://repositorio.cuc.edu.co/bitstreams/de759bda-e6dd-453e-b321-fce41821b10e/download
https://repositorio.cuc.edu.co/bitstreams/bc762d22-bdcc-42d1-a23d-4dc36048d181/download
bitstream.checksum.fl_str_mv bc1e23be59af4f16fb8c1ce8065711b3
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
db9717a67c128215b5d1f1c4d78eb0cf
b0ecffc3d33a82f7f735a436e7d92c2c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760826304954368
spelling Varela Izquierdo, NoelLezama Pineda, Omar BonergeDorta Gómez, RafaelViloria, AmelecDeras, IvanHernández Fernández, Lissette2019-05-14T13:26:08Z2019-05-14T13:26:08Z2018-06-16978-331993817-203029743https://hdl.handle.net/11323/3325Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Every day organizations pay more attention to Human Resources Management, because this human factor is preponderant in the results of it. An important policy is the Performance Evaluation (ED), since it allows the control and monitoring of management indicators, both individual and by process. To analyze the results, decision making in many organizations is done in a subjective manner and in consequence it brings serious problems to them. Taking into account this problem, it is decided to design and apply diffuse mathematical procedures and tools to reduce subjectivity and uncertainty in decision-making, creating work algorithms for this policy, which includes multifactorial weights and analysis with measurement indicators that they allow tangible and reliable results. Statistical techniques (ANOVA) are also used to establish relationships between work groups and learn about best practices.Cada día, las organizaciones prestan más atención a la Gestión de Recursos Humanos, porque este factor humano es preponderante en los resultados. Una política importante es la Evaluación de Desempeño (ED), ya que permite el control y monitoreo de los indicadores de gestión, tanto individuales como por proceso. Para analizar los resultados, la toma de decisiones en muchas organizaciones se realiza de manera subjetiva y, en consecuencia, les trae serios problemas. Teniendo en cuenta este problema, se decide diseñar y aplicar procedimientos matemáticos difusos y herramientas para reducir la subjetividad y la incertidumbre en la toma de decisiones, creando algoritmos de trabajo para esta política, que incluyen pesos multifactoriales y análisis con indicadores de medición que permiten tangibles y confiables. resultados Las técnicas estadísticas (ANOVA) también se utilizan para establecer relaciones entre grupos de trabajo y aprender sobre las mejores prácticas.Varela Izquierdo, Noel-0000-0001-7036-4414-600Lezama Pineda, Omar Bonerge-ce63ff8e-483d-44c4-8a08-ed549861a27a-0Dorta Gómez, Rafael-ae5015c8-6fa8-4307-9cb2-82df09563af7-0Viloria, Amelec-0000-0003-2673-6350-600Deras, Ivan-c4a4a57a-debc-46b1-bfb1-467c54ac99a5-0Hernández Fernández, Lissette-bc802d72-814d-407b-b73c-ec0640a444a1-0engSpringer VerlagDOI: 10.1007/978-3-319-93818-9_16Bernoulli, J.: Ars conjectandi (The art of conjecture). Impensis Thurnisiorum, Basel, Switzerland (1713) Papoulis, A., Pillai, S.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York (1965) Tizhoosh, R.: Opposition-based learning: a new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, pp. 695–701 (2005) Xu, Q.Z., Wang, L., Wang, N., Hei, X.H., Zhao, L.: A review of opposition-based learning from 2005 to 2012. Eng. Appl. Artif. Intell. 29(1), 1–12 (2014) Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Quasi-oppositional differential evolution. In: IEEE Congress on Evolutionary Computation, Singapore, pp. 2229–2236 (2007) Ergezer, M., Simon, D., Du, D.W.: Oppositional biogeography-based optimization. In: IEEE International Conference on Systems, Man and Cybernetics, San Antonio, USA, pp. 1009– 1014 (2009) Rahnamayan, S., Wang, G.G.: Center-based sampling for population-based algorithms. In: IEEE Congress on Evolutionary Computation, pp. 933–938. Trondheim, Norway (2009) Wang, H., Wu, Z.J., Liu, Y., Wang, J., Jiang, D.Z., Chen, L.L.: Space transformation search: a new evolutionary technique. In: ACM/SIGEVO Summit on Genetic and Evolutionary Computation, Shanghai, China, pp. 537–544 (2009) Xu, Q.Z., Wang, L., He, B.M., Wang, N.: Modified opposition-based differential evolution for function optimization. J. Comput. Inf. Syst. 7(5), 1582–1591 (2011) Xu, H.P., Erdbrink, C.D., Krzhizhanovskaya, V.V.: How to speed up optimization? opposite-center learning and its application to differential evolution. Procedia Comput. Sci. 51(1), 805–814 (2015) Ergezer, M., Simon, D.: Mathematical and experimental analyses of oppositional algorithms. IEEE Trans. Cybern. 44(11), 2178–2189 (2014) Rahnamayan, S., Wang, G.G., Ventresca, M.: An intuitive distance-based explanation of opposition-based sampling. Appl. Soft Comput. 12(9), 2828–2839 (2012)Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fuzzy logicPerformance evaluatioLógica difusaEvaluación de desempeñoFuzzy logic applied to the performance evaluation. Honduran coffee sector caseLógica difusa aplicada a la evaluación de desempeño. caso del sector cafetalero Hondureño.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINAL2018_Book_AdvancesInSwarmIntelligence.pdf2018_Book_AdvancesInSwarmIntelligence.pdfapplication/pdf68913343https://repositorio.cuc.edu.co/bitstreams/817cbca4-1fff-49f4-abd5-dd6a4289e20d/downloadbc1e23be59af4f16fb8c1ce8065711b3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/b200c639-00a3-423f-a4c5-fa9f606b0418/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/37fd3715-158d-4a02-a9ee-27d26ebcf2dc/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAIL2018_Book_AdvancesInSwarmIntelligence.pdf.jpg2018_Book_AdvancesInSwarmIntelligence.pdf.jpgimage/jpeg21572https://repositorio.cuc.edu.co/bitstreams/de759bda-e6dd-453e-b321-fce41821b10e/downloaddb9717a67c128215b5d1f1c4d78eb0cfMD55TEXT2018_Book_AdvancesInSwarmIntelligence.pdf.txt2018_Book_AdvancesInSwarmIntelligence.pdf.txttext/plain1242583https://repositorio.cuc.edu.co/bitstreams/bc762d22-bdcc-42d1-a23d-4dc36048d181/downloadb0ecffc3d33a82f7f735a436e7d92c2cMD5611323/3325oai:repositorio.cuc.edu.co:11323/33252024-09-17 14:06:02.818http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=