Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis

A systematic review and meta-analysis were performed to determine if heart rate variability-guided training (HRV-g), compared to predefined training (PT), maximizes the further improvement of endurance physiological and performance markers in healthy individuals. This analysis included randomized co...

Full description

Autores:
Medellín Ruiz, Juan Pablo
Rubio-Arias, Jacobo Á.
Clemente-Suárez, Vicente Javier
Ramos-Campo, Domingo Jesús
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7628
Acceso en línea:
https://hdl.handle.net/11323/7628
https://repositorio.cuc.edu.co/
Palabra clave:
Autonomic nervous system
Cardiac autonomic regulation
Cardiorespiratory fitness
Daily training
Endurance
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_1f6ab570b21556d28bec1d1aaa2ae66a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7628
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis
title Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis
spellingShingle Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis
Autonomic nervous system
Cardiac autonomic regulation
Cardiorespiratory fitness
Daily training
Endurance
title_short Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis
title_full Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis
title_fullStr Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis
title_full_unstemmed Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis
title_sort Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis
dc.creator.fl_str_mv Medellín Ruiz, Juan Pablo
Rubio-Arias, Jacobo Á.
Clemente-Suárez, Vicente Javier
Ramos-Campo, Domingo Jesús
dc.contributor.author.spa.fl_str_mv Medellín Ruiz, Juan Pablo
Rubio-Arias, Jacobo Á.
Clemente-Suárez, Vicente Javier
Ramos-Campo, Domingo Jesús
dc.subject.spa.fl_str_mv Autonomic nervous system
Cardiac autonomic regulation
Cardiorespiratory fitness
Daily training
Endurance
topic Autonomic nervous system
Cardiac autonomic regulation
Cardiorespiratory fitness
Daily training
Endurance
description A systematic review and meta-analysis were performed to determine if heart rate variability-guided training (HRV-g), compared to predefined training (PT), maximizes the further improvement of endurance physiological and performance markers in healthy individuals. This analysis included randomized controlled trials assessing the effects of HRV-g vs. PT on endurance physiological and performance markers in untrained, physically active, and well-trained subjects. Eight articles qualified for inclusion. HRV-g training significantly improved maximum oxygen uptake (VO2max) (MD = 2.84, CI: 1.41, 4.27; p < 0.0001), maximum aerobic power or speed (WMax) (SMD = 0.66, 95% CI 0.33, 0.98; p < 0.0001), aerobic performance (SMD = 0.71, CI 0.16, 1.25; p = 0.01) and power or speed at ventilatory thresholds (VT) VT1 (SMD = 0.62, CI 0.04, 1.20; p = 0.04) and VT2 (SMD = 0.81, CI 0.41, 1.22; p < 0.0001). However, HRV-g did not show significant differences in VO2max (MD = 0.96, CI −1.11, 3.03; p = 0.36), WMax (SMD = 0.06, CI −0.26, 0.38; p = 0.72), or aerobic performance (SMD = 0.14, CI −0.22, 0.51; p = 0.45) in power or speed at VT1 (SMD = 0.27, 95% CI −0.16, 0.70; p = 0.22) or VT2 (SMD = 0.18, 95% CI −0.20, 0.57; p = 0.35), when compared to PT. Although HRV-based training periodization improved both physiological variables and aerobic performance, this method did not provide significant benefit over PT.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-22T18:29:08Z
dc.date.available.none.fl_str_mv 2020-12-22T18:29:08Z
dc.date.issued.none.fl_str_mv 2020-11-29
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2076-3417
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7628
dc.identifier.doi.spa.fl_str_mv doi:10.3390/app10238532
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2076-3417
doi:10.3390/app10238532
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7628
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Clemente-Suárez, V.J.; Delgado-Moreno, R.; González, B.; Ortega, J.; Ramos-Campo, D.J. Amateur endurance triathletes’ performance is improved independently of volume or intensity based training. Physiol. Behav. 2019, 205, 2–8. [CrossRef]
2. Düking, P.; Zinner, C.; Reed, J.L.; Holmberg, H.; Sperlich, B. Predefined vs. data guided training prescription based on autonomic nervous system variation: A systematic review. Scand. J. Med. Sci. Sport. 2020, 30, 2291–2304. [CrossRef]
3. Martín, J.P.G.; Clemente-Suárez, V.J.; Ramos-Campo, D.J. Hematological and running performance modification of trained athletes after reverse vs. block training periodization. Int. J. Environ. Res. Public Health 2020, 17, 4825. [CrossRef]
4. Clemente-Suarez, V.J.; Ramos-Campo, D.J. Effectiveness of reverse vs. traditional linear training periodization in triathlon. Int. J. Environ. Res. Public Health 2019, 16, 2807. [CrossRef] [PubMed]
5. Roos, L.; Taube, W.; Brandt, M.; Heyer, L.; Wyss, T. Monitoring of daily training load and training load responses in endurance sports: What do coaches want? Schweiz. Z. Sportmed. Sporttraumatol. 2013, 61, 30–36.
6. Halson, S.L. Monitoring training load to understand fatigue in athletes. Sport. Med. 2014, 44, 139–147. [CrossRef]
7. Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sport. Med. 2003, 33, 517–538. [CrossRef]
8. Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring athlete training loads: Consensus statement. Int. J. Sport. Physiol. Perform. 2017, 12, 161–170. [CrossRef]
9. Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Tulppo, M.P. Endurance training guided individually by daily heart rate variability measurements. Eur. J. Appl. Physiol. 2007, 101, 743–751. [CrossRef]
10. Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Plews, D.; Moya-Ramon, M. Training prescription guided by heart rate variability vs. block periodization in welltrained cyclists. J. Strength Cond. Res. 2019, 34, 1511–1518. [CrossRef]
11. Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Moya-Ramon, M. Training prescription guided by heart-rate variability in cycling. Int. J. Sport. Physiol. Perform. 2019, 14, 23–32. [CrossRef]
12. Nuuttila, O.P.; Nikander, A.; Polomoshnov, D.; Laukkanen, J.A.; Häkkinen, K. Effects of HRV-guided vs. predetermined block training on performance, HRV and serum hormones. Int. J. Sport. Med. 2017, 38, 909–920. [CrossRef]
13. Botek, M.; McKune, A.J.; Krejci, J.; Stejskal, P.; Gaba, A. Change in performance in response to training load adjustment based on autonomic activity. Int. J. Sport. Med. 2014, 35, 482–488. [CrossRef] [PubMed]
14. Carrasco-Poyatos, M.; González-Quílez, A.; Martínez-González-moro, I.; Granero-Gallegos, A. HRV-guided training for professional endurance athletes: A protocol for a cluster-randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 5465. [CrossRef]
15. Clemente-Suarez, V.J. Periodized training achieves better autonomic modulation and aerobic performance than non-periodized training. J. Sport. Med. Phys. Fitness 2018, 58, 1559–1564. [CrossRef]
16. Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sport. Med. 2003, 33, 889–919. [CrossRef]
17. Yanlin, C.; Fei, H.; Shengjia, X. Training variables and autonomic nervous system adaption. Chin. J. Tissue Eng. Res. Zhongguo Zu Zhi Gong Cheng Yan Jiu 2020, 24, 312–319. [CrossRef]
18. Buchheit, M.; Chivot, A.; Parouty, J.; Mercier, D.; Al Haddad, H.; Laursen, P.B.; Ahmaidi, S. Monitoring endurance running performance using cardiac parasympathetic function. Eur. J. Appl. Physiol. 2010, 108, 1153–1167. [CrossRef]
19. Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European society of cardiology and the North American society of pacing and electrophysiology. Eur. Heart J. 1996, 17, 1043–1065. [CrossRef]
20. Palak, K.; Furgała, A.; Biel, P.; Szyguła, Z.; Thor, P.J. Influence of physical training on the function of Autonomic nervous system in professional swimmers. Med. Sport. 2013, 17, 119–124. [CrossRef]
21. Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [CrossRef]
22. Schmitt, L.; Willis, S.J.; Fardel, A.; Coulmy, N.; Millet, G.P. Live high–train low guided by daily heart rate variability in elite Nordic-skiers. Eur. J. Appl. Physiol. 2018, 118, 419–428. [CrossRef]
23. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D.; et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [CrossRef]
24. Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovi´c, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, 5928. [CrossRef]
25. Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557. [CrossRef]
26. Vesterinen, V.; Nummela, A.; Heikura, I.; Laine, T.; Hynynen, E.; Botella, J.; Häkkinen, K. Individual endurance training prescription with heart rate variability. Med. Sci. Sport. Exerc. 2016, 48, 1347–1354. [CrossRef]
27. Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Nissilä, J.; Virtanen, P.; Karjalainen, J.; Tulppo, M.P. Daily exercise prescription on the basis of hr variability among men and women. Med. Sci. Sport. Exerc. 2010, 42, 1355–1363. [CrossRef]
28. Da Silva, D.F.; Ferraro, Z.M.; Adamo, K.B.; Machado, F.A. Endurance running training individually guided by HRV in ultrained women. J. Strength Cond. Res. 2019, 33, 736–746. [CrossRef]
29. Frandsen, J.; Vest, S.D.; Larsen, S.; Dela, F.; Helge, J.W. Maximal fat oxidation is related to performance in an ironman triathlon. Int. J. Sport. Med. 2017, 38, 975–982. [CrossRef]
30. Tamburs, N.Y.; Rebelo, A.C.S.; Cesar, M.D.C.; Catai, A.M.; Takahashi, A.C.D.M.; Andrade, C.P.; Porta, A.; Silva, E.D. Relationship between heart rate variability and VO2 peak in active women. Rev. Bras. Med. Esporte 2014, 20, 354–358. [CrossRef]
31. Vesterinen, V.; Hakkinen, K.; Hynynen, E.; Mikkola, J.; Hokka, L.; Nummela, A. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand. J. Med. Sci. Sport. 2013, 23, 171–180. [CrossRef]
32. Kiviniemi, A.M.; Tulppo, M.P.; Eskelinen, J.J.; Savolainen, A.M.; Kapanen, J.; Heinonen, I.H.A.; Hautala, A.J.; Hannukainen, J.C.; Kalliokoski, K.K. Autonomic function predicts fitness response to short-term high-intensity interval training. Int. J. Sport. Med. 2015, 36, 915–921. [CrossRef]
33. Schmitt, L.; Regnard, J.; Parmentier, A.L.; Mauny, F.; Mourot, L.; Coulmy, N.; Millet, G.P. Typology of fatigue by heart rate variability analysis in elite Nordic-skiers. Int. J. Sport. Med. 2015, 36, 999–1007. [CrossRef]
34. Schmitt, L.; Regnard, J.; Millet, G.P. Monitoring fatigue status with HRV measures in elite athletes: An avenue beyond RMSSD? Front. Physiol. 2015, 6, 343. [CrossRef]
35. Bourdillon, N.; Schmitt, L.; Yazdani, S.; Vesin, J.M.; Millet, G.P. Minimal window duration for accurate HRV recording in athletes. Front. Neurosci. 2017, 11. [CrossRef]
36. Melo, H.M.; Martins, T.C.; Nascimento, L.M.; Hoeller, A.A.; Walz, R.; Takase, E. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing. Ann. Noninvasive Electrocardiol. 2018, 23, e12565. [CrossRef]
37. Saboul, D.; Pialoux, V.; Hautier, C. The impact of breathing on HRV measurements: Implications for the longitudinal follow-up of athletes. Eur. J. Sport Sci. 2013, 13, 534–542. [CrossRef]
38. Sandercock, G.R.H.; Bromley, P.D.; Brodie, D.A. The reliability of short-term measurements of heart rate variability. Int. J. Cardiol. 2005, 103, 238–247. [CrossRef]
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Applied Sciences
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2076-3417/10/23/8532
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/10b76b70-80ae-4237-bc1e-565127c5f2a0/download
https://repositorio.cuc.edu.co/bitstreams/5895c0e7-b851-4b24-bc7e-62632a84d40a/download
https://repositorio.cuc.edu.co/bitstreams/537502a2-222c-40af-a7f1-0d230e59e414/download
https://repositorio.cuc.edu.co/bitstreams/887e2384-3e7f-4b8a-a33a-e432f766e2e3/download
https://repositorio.cuc.edu.co/bitstreams/89d8990d-cde3-407f-9389-79418c886983/download
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
1f2fe35dc91e99deea1ac767cb59fdea
e30e9215131d99561d40d6b0abbe9bad
fcc5d726b2b855540cf5caedaf08918a
aa83fe7111c0145ab3b7e9e17e4ae578
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760696646434816
spelling Medellín Ruiz, Juan PabloRubio-Arias, Jacobo Á.Clemente-Suárez, Vicente JavierRamos-Campo, Domingo Jesús2020-12-22T18:29:08Z2020-12-22T18:29:08Z2020-11-292076-3417https://hdl.handle.net/11323/7628doi:10.3390/app10238532Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A systematic review and meta-analysis were performed to determine if heart rate variability-guided training (HRV-g), compared to predefined training (PT), maximizes the further improvement of endurance physiological and performance markers in healthy individuals. This analysis included randomized controlled trials assessing the effects of HRV-g vs. PT on endurance physiological and performance markers in untrained, physically active, and well-trained subjects. Eight articles qualified for inclusion. HRV-g training significantly improved maximum oxygen uptake (VO2max) (MD = 2.84, CI: 1.41, 4.27; p < 0.0001), maximum aerobic power or speed (WMax) (SMD = 0.66, 95% CI 0.33, 0.98; p < 0.0001), aerobic performance (SMD = 0.71, CI 0.16, 1.25; p = 0.01) and power or speed at ventilatory thresholds (VT) VT1 (SMD = 0.62, CI 0.04, 1.20; p = 0.04) and VT2 (SMD = 0.81, CI 0.41, 1.22; p < 0.0001). However, HRV-g did not show significant differences in VO2max (MD = 0.96, CI −1.11, 3.03; p = 0.36), WMax (SMD = 0.06, CI −0.26, 0.38; p = 0.72), or aerobic performance (SMD = 0.14, CI −0.22, 0.51; p = 0.45) in power or speed at VT1 (SMD = 0.27, 95% CI −0.16, 0.70; p = 0.22) or VT2 (SMD = 0.18, 95% CI −0.20, 0.57; p = 0.35), when compared to PT. Although HRV-based training periodization improved both physiological variables and aerobic performance, this method did not provide significant benefit over PT.Medellín Ruiz, Juan Pablo-will be generated-orcid-0000-0003-0071-6239-600Rubio-Arias, Jacobo Á.-will be generated-orcid-0000-0003-2496-2426-600Clemente-Suárez, Vicente Javier-will be generated-orcid-0000-0002-2397-2801-600Ramos-Campo, Domingo Jesús-will be generated-orcid-0000-0002-8890-4244-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Applied Scienceshttps://www.mdpi.com/2076-3417/10/23/8532Autonomic nervous systemCardiac autonomic regulationCardiorespiratory fitnessDaily trainingEnduranceEffectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Clemente-Suárez, V.J.; Delgado-Moreno, R.; González, B.; Ortega, J.; Ramos-Campo, D.J. Amateur endurance triathletes’ performance is improved independently of volume or intensity based training. Physiol. Behav. 2019, 205, 2–8. [CrossRef]2. Düking, P.; Zinner, C.; Reed, J.L.; Holmberg, H.; Sperlich, B. Predefined vs. data guided training prescription based on autonomic nervous system variation: A systematic review. Scand. J. Med. Sci. Sport. 2020, 30, 2291–2304. [CrossRef]3. Martín, J.P.G.; Clemente-Suárez, V.J.; Ramos-Campo, D.J. Hematological and running performance modification of trained athletes after reverse vs. block training periodization. Int. J. Environ. Res. Public Health 2020, 17, 4825. [CrossRef]4. Clemente-Suarez, V.J.; Ramos-Campo, D.J. Effectiveness of reverse vs. traditional linear training periodization in triathlon. Int. J. Environ. Res. Public Health 2019, 16, 2807. [CrossRef] [PubMed]5. Roos, L.; Taube, W.; Brandt, M.; Heyer, L.; Wyss, T. Monitoring of daily training load and training load responses in endurance sports: What do coaches want? Schweiz. Z. Sportmed. Sporttraumatol. 2013, 61, 30–36.6. Halson, S.L. Monitoring training load to understand fatigue in athletes. Sport. Med. 2014, 44, 139–147. [CrossRef]7. Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sport. Med. 2003, 33, 517–538. [CrossRef]8. Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring athlete training loads: Consensus statement. Int. J. Sport. Physiol. Perform. 2017, 12, 161–170. [CrossRef]9. Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Tulppo, M.P. Endurance training guided individually by daily heart rate variability measurements. Eur. J. Appl. Physiol. 2007, 101, 743–751. [CrossRef]10. Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Plews, D.; Moya-Ramon, M. Training prescription guided by heart rate variability vs. block periodization in welltrained cyclists. J. Strength Cond. Res. 2019, 34, 1511–1518. [CrossRef]11. Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Moya-Ramon, M. Training prescription guided by heart-rate variability in cycling. Int. J. Sport. Physiol. Perform. 2019, 14, 23–32. [CrossRef]12. Nuuttila, O.P.; Nikander, A.; Polomoshnov, D.; Laukkanen, J.A.; Häkkinen, K. Effects of HRV-guided vs. predetermined block training on performance, HRV and serum hormones. Int. J. Sport. Med. 2017, 38, 909–920. [CrossRef]13. Botek, M.; McKune, A.J.; Krejci, J.; Stejskal, P.; Gaba, A. Change in performance in response to training load adjustment based on autonomic activity. Int. J. Sport. Med. 2014, 35, 482–488. [CrossRef] [PubMed]14. Carrasco-Poyatos, M.; González-Quílez, A.; Martínez-González-moro, I.; Granero-Gallegos, A. HRV-guided training for professional endurance athletes: A protocol for a cluster-randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 5465. [CrossRef]15. Clemente-Suarez, V.J. Periodized training achieves better autonomic modulation and aerobic performance than non-periodized training. J. Sport. Med. Phys. Fitness 2018, 58, 1559–1564. [CrossRef]16. Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sport. Med. 2003, 33, 889–919. [CrossRef]17. Yanlin, C.; Fei, H.; Shengjia, X. Training variables and autonomic nervous system adaption. Chin. J. Tissue Eng. Res. Zhongguo Zu Zhi Gong Cheng Yan Jiu 2020, 24, 312–319. [CrossRef]18. Buchheit, M.; Chivot, A.; Parouty, J.; Mercier, D.; Al Haddad, H.; Laursen, P.B.; Ahmaidi, S. Monitoring endurance running performance using cardiac parasympathetic function. Eur. J. Appl. Physiol. 2010, 108, 1153–1167. [CrossRef]19. Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European society of cardiology and the North American society of pacing and electrophysiology. Eur. Heart J. 1996, 17, 1043–1065. [CrossRef]20. Palak, K.; Furgała, A.; Biel, P.; Szyguła, Z.; Thor, P.J. Influence of physical training on the function of Autonomic nervous system in professional swimmers. Med. Sport. 2013, 17, 119–124. [CrossRef]21. Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [CrossRef]22. Schmitt, L.; Willis, S.J.; Fardel, A.; Coulmy, N.; Millet, G.P. Live high–train low guided by daily heart rate variability in elite Nordic-skiers. Eur. J. Appl. Physiol. 2018, 118, 419–428. [CrossRef]23. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D.; et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [CrossRef]24. Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovi´c, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, 5928. [CrossRef]25. Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557. [CrossRef]26. Vesterinen, V.; Nummela, A.; Heikura, I.; Laine, T.; Hynynen, E.; Botella, J.; Häkkinen, K. Individual endurance training prescription with heart rate variability. Med. Sci. Sport. Exerc. 2016, 48, 1347–1354. [CrossRef]27. Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Nissilä, J.; Virtanen, P.; Karjalainen, J.; Tulppo, M.P. Daily exercise prescription on the basis of hr variability among men and women. Med. Sci. Sport. Exerc. 2010, 42, 1355–1363. [CrossRef]28. Da Silva, D.F.; Ferraro, Z.M.; Adamo, K.B.; Machado, F.A. Endurance running training individually guided by HRV in ultrained women. J. Strength Cond. Res. 2019, 33, 736–746. [CrossRef]29. Frandsen, J.; Vest, S.D.; Larsen, S.; Dela, F.; Helge, J.W. Maximal fat oxidation is related to performance in an ironman triathlon. Int. J. Sport. Med. 2017, 38, 975–982. [CrossRef]30. Tamburs, N.Y.; Rebelo, A.C.S.; Cesar, M.D.C.; Catai, A.M.; Takahashi, A.C.D.M.; Andrade, C.P.; Porta, A.; Silva, E.D. Relationship between heart rate variability and VO2 peak in active women. Rev. Bras. Med. Esporte 2014, 20, 354–358. [CrossRef]31. Vesterinen, V.; Hakkinen, K.; Hynynen, E.; Mikkola, J.; Hokka, L.; Nummela, A. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand. J. Med. Sci. Sport. 2013, 23, 171–180. [CrossRef]32. Kiviniemi, A.M.; Tulppo, M.P.; Eskelinen, J.J.; Savolainen, A.M.; Kapanen, J.; Heinonen, I.H.A.; Hautala, A.J.; Hannukainen, J.C.; Kalliokoski, K.K. Autonomic function predicts fitness response to short-term high-intensity interval training. Int. J. Sport. Med. 2015, 36, 915–921. [CrossRef]33. Schmitt, L.; Regnard, J.; Parmentier, A.L.; Mauny, F.; Mourot, L.; Coulmy, N.; Millet, G.P. Typology of fatigue by heart rate variability analysis in elite Nordic-skiers. Int. J. Sport. Med. 2015, 36, 999–1007. [CrossRef]34. Schmitt, L.; Regnard, J.; Millet, G.P. Monitoring fatigue status with HRV measures in elite athletes: An avenue beyond RMSSD? Front. Physiol. 2015, 6, 343. [CrossRef]35. Bourdillon, N.; Schmitt, L.; Yazdani, S.; Vesin, J.M.; Millet, G.P. Minimal window duration for accurate HRV recording in athletes. Front. Neurosci. 2017, 11. [CrossRef]36. Melo, H.M.; Martins, T.C.; Nascimento, L.M.; Hoeller, A.A.; Walz, R.; Takase, E. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing. Ann. Noninvasive Electrocardiol. 2018, 23, e12565. [CrossRef]37. Saboul, D.; Pialoux, V.; Hautier, C. The impact of breathing on HRV measurements: Implications for the longitudinal follow-up of athletes. Eur. J. Sport Sci. 2013, 13, 534–542. [CrossRef]38. Sandercock, G.R.H.; Bromley, P.D.; Brodie, D.A. The reliability of short-term measurements of heart rate variability. Int. J. Cardiol. 2005, 103, 238–247. [CrossRef]PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/10b76b70-80ae-4237-bc1e-565127c5f2a0/download42fd4ad1e89814f5e4a476b409eb708cMD52ORIGINALEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdfEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdfapplication/pdf5965555https://repositorio.cuc.edu.co/bitstreams/5895c0e7-b851-4b24-bc7e-62632a84d40a/download1f2fe35dc91e99deea1ac767cb59fdeaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/537502a2-222c-40af-a7f1-0d230e59e414/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdf.jpgEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdf.jpgimage/jpeg67062https://repositorio.cuc.edu.co/bitstreams/887e2384-3e7f-4b8a-a33a-e432f766e2e3/downloadfcc5d726b2b855540cf5caedaf08918aMD54TEXTEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdf.txtEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdf.txttext/plain47154https://repositorio.cuc.edu.co/bitstreams/89d8990d-cde3-407f-9389-79418c886983/downloadaa83fe7111c0145ab3b7e9e17e4ae578MD5511323/7628oai:repositorio.cuc.edu.co:11323/76282024-09-17 10:15:58.157http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==