Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis
A systematic review and meta-analysis were performed to determine if heart rate variability-guided training (HRV-g), compared to predefined training (PT), maximizes the further improvement of endurance physiological and performance markers in healthy individuals. This analysis included randomized co...
- Autores:
-
Medellín Ruiz, Juan Pablo
Rubio-Arias, Jacobo Á.
Clemente-Suárez, Vicente Javier
Ramos-Campo, Domingo Jesús
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7628
- Acceso en línea:
- https://hdl.handle.net/11323/7628
https://repositorio.cuc.edu.co/
- Palabra clave:
- Autonomic nervous system
Cardiac autonomic regulation
Cardiorespiratory fitness
Daily training
Endurance
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_1f6ab570b21556d28bec1d1aaa2ae66a |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7628 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis |
title |
Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis |
spellingShingle |
Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis Autonomic nervous system Cardiac autonomic regulation Cardiorespiratory fitness Daily training Endurance |
title_short |
Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis |
title_full |
Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis |
title_fullStr |
Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis |
title_full_unstemmed |
Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis |
title_sort |
Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis |
dc.creator.fl_str_mv |
Medellín Ruiz, Juan Pablo Rubio-Arias, Jacobo Á. Clemente-Suárez, Vicente Javier Ramos-Campo, Domingo Jesús |
dc.contributor.author.spa.fl_str_mv |
Medellín Ruiz, Juan Pablo Rubio-Arias, Jacobo Á. Clemente-Suárez, Vicente Javier Ramos-Campo, Domingo Jesús |
dc.subject.spa.fl_str_mv |
Autonomic nervous system Cardiac autonomic regulation Cardiorespiratory fitness Daily training Endurance |
topic |
Autonomic nervous system Cardiac autonomic regulation Cardiorespiratory fitness Daily training Endurance |
description |
A systematic review and meta-analysis were performed to determine if heart rate variability-guided training (HRV-g), compared to predefined training (PT), maximizes the further improvement of endurance physiological and performance markers in healthy individuals. This analysis included randomized controlled trials assessing the effects of HRV-g vs. PT on endurance physiological and performance markers in untrained, physically active, and well-trained subjects. Eight articles qualified for inclusion. HRV-g training significantly improved maximum oxygen uptake (VO2max) (MD = 2.84, CI: 1.41, 4.27; p < 0.0001), maximum aerobic power or speed (WMax) (SMD = 0.66, 95% CI 0.33, 0.98; p < 0.0001), aerobic performance (SMD = 0.71, CI 0.16, 1.25; p = 0.01) and power or speed at ventilatory thresholds (VT) VT1 (SMD = 0.62, CI 0.04, 1.20; p = 0.04) and VT2 (SMD = 0.81, CI 0.41, 1.22; p < 0.0001). However, HRV-g did not show significant differences in VO2max (MD = 0.96, CI −1.11, 3.03; p = 0.36), WMax (SMD = 0.06, CI −0.26, 0.38; p = 0.72), or aerobic performance (SMD = 0.14, CI −0.22, 0.51; p = 0.45) in power or speed at VT1 (SMD = 0.27, 95% CI −0.16, 0.70; p = 0.22) or VT2 (SMD = 0.18, 95% CI −0.20, 0.57; p = 0.35), when compared to PT. Although HRV-based training periodization improved both physiological variables and aerobic performance, this method did not provide significant benefit over PT. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-12-22T18:29:08Z |
dc.date.available.none.fl_str_mv |
2020-12-22T18:29:08Z |
dc.date.issued.none.fl_str_mv |
2020-11-29 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2076-3417 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7628 |
dc.identifier.doi.spa.fl_str_mv |
doi:10.3390/app10238532 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2076-3417 doi:10.3390/app10238532 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7628 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Clemente-Suárez, V.J.; Delgado-Moreno, R.; González, B.; Ortega, J.; Ramos-Campo, D.J. Amateur endurance triathletes’ performance is improved independently of volume or intensity based training. Physiol. Behav. 2019, 205, 2–8. [CrossRef] 2. Düking, P.; Zinner, C.; Reed, J.L.; Holmberg, H.; Sperlich, B. Predefined vs. data guided training prescription based on autonomic nervous system variation: A systematic review. Scand. J. Med. Sci. Sport. 2020, 30, 2291–2304. [CrossRef] 3. Martín, J.P.G.; Clemente-Suárez, V.J.; Ramos-Campo, D.J. Hematological and running performance modification of trained athletes after reverse vs. block training periodization. Int. J. Environ. Res. Public Health 2020, 17, 4825. [CrossRef] 4. Clemente-Suarez, V.J.; Ramos-Campo, D.J. Effectiveness of reverse vs. traditional linear training periodization in triathlon. Int. J. Environ. Res. Public Health 2019, 16, 2807. [CrossRef] [PubMed] 5. Roos, L.; Taube, W.; Brandt, M.; Heyer, L.; Wyss, T. Monitoring of daily training load and training load responses in endurance sports: What do coaches want? Schweiz. Z. Sportmed. Sporttraumatol. 2013, 61, 30–36. 6. Halson, S.L. Monitoring training load to understand fatigue in athletes. Sport. Med. 2014, 44, 139–147. [CrossRef] 7. Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sport. Med. 2003, 33, 517–538. [CrossRef] 8. Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring athlete training loads: Consensus statement. Int. J. Sport. Physiol. Perform. 2017, 12, 161–170. [CrossRef] 9. Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Tulppo, M.P. Endurance training guided individually by daily heart rate variability measurements. Eur. J. Appl. Physiol. 2007, 101, 743–751. [CrossRef] 10. Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Plews, D.; Moya-Ramon, M. Training prescription guided by heart rate variability vs. block periodization in welltrained cyclists. J. Strength Cond. Res. 2019, 34, 1511–1518. [CrossRef] 11. Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Moya-Ramon, M. Training prescription guided by heart-rate variability in cycling. Int. J. Sport. Physiol. Perform. 2019, 14, 23–32. [CrossRef] 12. Nuuttila, O.P.; Nikander, A.; Polomoshnov, D.; Laukkanen, J.A.; Häkkinen, K. Effects of HRV-guided vs. predetermined block training on performance, HRV and serum hormones. Int. J. Sport. Med. 2017, 38, 909–920. [CrossRef] 13. Botek, M.; McKune, A.J.; Krejci, J.; Stejskal, P.; Gaba, A. Change in performance in response to training load adjustment based on autonomic activity. Int. J. Sport. Med. 2014, 35, 482–488. [CrossRef] [PubMed] 14. Carrasco-Poyatos, M.; González-Quílez, A.; Martínez-González-moro, I.; Granero-Gallegos, A. HRV-guided training for professional endurance athletes: A protocol for a cluster-randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 5465. [CrossRef] 15. Clemente-Suarez, V.J. Periodized training achieves better autonomic modulation and aerobic performance than non-periodized training. J. Sport. Med. Phys. Fitness 2018, 58, 1559–1564. [CrossRef] 16. Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sport. Med. 2003, 33, 889–919. [CrossRef] 17. Yanlin, C.; Fei, H.; Shengjia, X. Training variables and autonomic nervous system adaption. Chin. J. Tissue Eng. Res. Zhongguo Zu Zhi Gong Cheng Yan Jiu 2020, 24, 312–319. [CrossRef] 18. Buchheit, M.; Chivot, A.; Parouty, J.; Mercier, D.; Al Haddad, H.; Laursen, P.B.; Ahmaidi, S. Monitoring endurance running performance using cardiac parasympathetic function. Eur. J. Appl. Physiol. 2010, 108, 1153–1167. [CrossRef] 19. Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European society of cardiology and the North American society of pacing and electrophysiology. Eur. Heart J. 1996, 17, 1043–1065. [CrossRef] 20. Palak, K.; Furgała, A.; Biel, P.; Szyguła, Z.; Thor, P.J. Influence of physical training on the function of Autonomic nervous system in professional swimmers. Med. Sport. 2013, 17, 119–124. [CrossRef] 21. Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [CrossRef] 22. Schmitt, L.; Willis, S.J.; Fardel, A.; Coulmy, N.; Millet, G.P. Live high–train low guided by daily heart rate variability in elite Nordic-skiers. Eur. J. Appl. Physiol. 2018, 118, 419–428. [CrossRef] 23. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D.; et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [CrossRef] 24. Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovi´c, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, 5928. [CrossRef] 25. Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557. [CrossRef] 26. Vesterinen, V.; Nummela, A.; Heikura, I.; Laine, T.; Hynynen, E.; Botella, J.; Häkkinen, K. Individual endurance training prescription with heart rate variability. Med. Sci. Sport. Exerc. 2016, 48, 1347–1354. [CrossRef] 27. Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Nissilä, J.; Virtanen, P.; Karjalainen, J.; Tulppo, M.P. Daily exercise prescription on the basis of hr variability among men and women. Med. Sci. Sport. Exerc. 2010, 42, 1355–1363. [CrossRef] 28. Da Silva, D.F.; Ferraro, Z.M.; Adamo, K.B.; Machado, F.A. Endurance running training individually guided by HRV in ultrained women. J. Strength Cond. Res. 2019, 33, 736–746. [CrossRef] 29. Frandsen, J.; Vest, S.D.; Larsen, S.; Dela, F.; Helge, J.W. Maximal fat oxidation is related to performance in an ironman triathlon. Int. J. Sport. Med. 2017, 38, 975–982. [CrossRef] 30. Tamburs, N.Y.; Rebelo, A.C.S.; Cesar, M.D.C.; Catai, A.M.; Takahashi, A.C.D.M.; Andrade, C.P.; Porta, A.; Silva, E.D. Relationship between heart rate variability and VO2 peak in active women. Rev. Bras. Med. Esporte 2014, 20, 354–358. [CrossRef] 31. Vesterinen, V.; Hakkinen, K.; Hynynen, E.; Mikkola, J.; Hokka, L.; Nummela, A. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand. J. Med. Sci. Sport. 2013, 23, 171–180. [CrossRef] 32. Kiviniemi, A.M.; Tulppo, M.P.; Eskelinen, J.J.; Savolainen, A.M.; Kapanen, J.; Heinonen, I.H.A.; Hautala, A.J.; Hannukainen, J.C.; Kalliokoski, K.K. Autonomic function predicts fitness response to short-term high-intensity interval training. Int. J. Sport. Med. 2015, 36, 915–921. [CrossRef] 33. Schmitt, L.; Regnard, J.; Parmentier, A.L.; Mauny, F.; Mourot, L.; Coulmy, N.; Millet, G.P. Typology of fatigue by heart rate variability analysis in elite Nordic-skiers. Int. J. Sport. Med. 2015, 36, 999–1007. [CrossRef] 34. Schmitt, L.; Regnard, J.; Millet, G.P. Monitoring fatigue status with HRV measures in elite athletes: An avenue beyond RMSSD? Front. Physiol. 2015, 6, 343. [CrossRef] 35. Bourdillon, N.; Schmitt, L.; Yazdani, S.; Vesin, J.M.; Millet, G.P. Minimal window duration for accurate HRV recording in athletes. Front. Neurosci. 2017, 11. [CrossRef] 36. Melo, H.M.; Martins, T.C.; Nascimento, L.M.; Hoeller, A.A.; Walz, R.; Takase, E. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing. Ann. Noninvasive Electrocardiol. 2018, 23, e12565. [CrossRef] 37. Saboul, D.; Pialoux, V.; Hautier, C. The impact of breathing on HRV measurements: Implications for the longitudinal follow-up of athletes. Eur. J. Sport Sci. 2013, 13, 534–542. [CrossRef] 38. Sandercock, G.R.H.; Bromley, P.D.; Brodie, D.A. The reliability of short-term measurements of heart rate variability. Int. J. Cardiol. 2005, 103, 238–247. [CrossRef] |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Applied Sciences |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2076-3417/10/23/8532 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/10b76b70-80ae-4237-bc1e-565127c5f2a0/download https://repositorio.cuc.edu.co/bitstreams/5895c0e7-b851-4b24-bc7e-62632a84d40a/download https://repositorio.cuc.edu.co/bitstreams/537502a2-222c-40af-a7f1-0d230e59e414/download https://repositorio.cuc.edu.co/bitstreams/887e2384-3e7f-4b8a-a33a-e432f766e2e3/download https://repositorio.cuc.edu.co/bitstreams/89d8990d-cde3-407f-9389-79418c886983/download |
bitstream.checksum.fl_str_mv |
42fd4ad1e89814f5e4a476b409eb708c 1f2fe35dc91e99deea1ac767cb59fdea e30e9215131d99561d40d6b0abbe9bad fcc5d726b2b855540cf5caedaf08918a aa83fe7111c0145ab3b7e9e17e4ae578 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760696646434816 |
spelling |
Medellín Ruiz, Juan PabloRubio-Arias, Jacobo Á.Clemente-Suárez, Vicente JavierRamos-Campo, Domingo Jesús2020-12-22T18:29:08Z2020-12-22T18:29:08Z2020-11-292076-3417https://hdl.handle.net/11323/7628doi:10.3390/app10238532Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A systematic review and meta-analysis were performed to determine if heart rate variability-guided training (HRV-g), compared to predefined training (PT), maximizes the further improvement of endurance physiological and performance markers in healthy individuals. This analysis included randomized controlled trials assessing the effects of HRV-g vs. PT on endurance physiological and performance markers in untrained, physically active, and well-trained subjects. Eight articles qualified for inclusion. HRV-g training significantly improved maximum oxygen uptake (VO2max) (MD = 2.84, CI: 1.41, 4.27; p < 0.0001), maximum aerobic power or speed (WMax) (SMD = 0.66, 95% CI 0.33, 0.98; p < 0.0001), aerobic performance (SMD = 0.71, CI 0.16, 1.25; p = 0.01) and power or speed at ventilatory thresholds (VT) VT1 (SMD = 0.62, CI 0.04, 1.20; p = 0.04) and VT2 (SMD = 0.81, CI 0.41, 1.22; p < 0.0001). However, HRV-g did not show significant differences in VO2max (MD = 0.96, CI −1.11, 3.03; p = 0.36), WMax (SMD = 0.06, CI −0.26, 0.38; p = 0.72), or aerobic performance (SMD = 0.14, CI −0.22, 0.51; p = 0.45) in power or speed at VT1 (SMD = 0.27, 95% CI −0.16, 0.70; p = 0.22) or VT2 (SMD = 0.18, 95% CI −0.20, 0.57; p = 0.35), when compared to PT. Although HRV-based training periodization improved both physiological variables and aerobic performance, this method did not provide significant benefit over PT.Medellín Ruiz, Juan Pablo-will be generated-orcid-0000-0003-0071-6239-600Rubio-Arias, Jacobo Á.-will be generated-orcid-0000-0003-2496-2426-600Clemente-Suárez, Vicente Javier-will be generated-orcid-0000-0002-2397-2801-600Ramos-Campo, Domingo Jesús-will be generated-orcid-0000-0002-8890-4244-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Applied Scienceshttps://www.mdpi.com/2076-3417/10/23/8532Autonomic nervous systemCardiac autonomic regulationCardiorespiratory fitnessDaily trainingEnduranceEffectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Clemente-Suárez, V.J.; Delgado-Moreno, R.; González, B.; Ortega, J.; Ramos-Campo, D.J. Amateur endurance triathletes’ performance is improved independently of volume or intensity based training. Physiol. Behav. 2019, 205, 2–8. [CrossRef]2. Düking, P.; Zinner, C.; Reed, J.L.; Holmberg, H.; Sperlich, B. Predefined vs. data guided training prescription based on autonomic nervous system variation: A systematic review. Scand. J. Med. Sci. Sport. 2020, 30, 2291–2304. [CrossRef]3. Martín, J.P.G.; Clemente-Suárez, V.J.; Ramos-Campo, D.J. Hematological and running performance modification of trained athletes after reverse vs. block training periodization. Int. J. Environ. Res. Public Health 2020, 17, 4825. [CrossRef]4. Clemente-Suarez, V.J.; Ramos-Campo, D.J. Effectiveness of reverse vs. traditional linear training periodization in triathlon. Int. J. Environ. Res. Public Health 2019, 16, 2807. [CrossRef] [PubMed]5. Roos, L.; Taube, W.; Brandt, M.; Heyer, L.; Wyss, T. Monitoring of daily training load and training load responses in endurance sports: What do coaches want? Schweiz. Z. Sportmed. Sporttraumatol. 2013, 61, 30–36.6. Halson, S.L. Monitoring training load to understand fatigue in athletes. Sport. Med. 2014, 44, 139–147. [CrossRef]7. Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sport. Med. 2003, 33, 517–538. [CrossRef]8. Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring athlete training loads: Consensus statement. Int. J. Sport. Physiol. Perform. 2017, 12, 161–170. [CrossRef]9. Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Tulppo, M.P. Endurance training guided individually by daily heart rate variability measurements. Eur. J. Appl. Physiol. 2007, 101, 743–751. [CrossRef]10. Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Plews, D.; Moya-Ramon, M. Training prescription guided by heart rate variability vs. block periodization in welltrained cyclists. J. Strength Cond. Res. 2019, 34, 1511–1518. [CrossRef]11. Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Moya-Ramon, M. Training prescription guided by heart-rate variability in cycling. Int. J. Sport. Physiol. Perform. 2019, 14, 23–32. [CrossRef]12. Nuuttila, O.P.; Nikander, A.; Polomoshnov, D.; Laukkanen, J.A.; Häkkinen, K. Effects of HRV-guided vs. predetermined block training on performance, HRV and serum hormones. Int. J. Sport. Med. 2017, 38, 909–920. [CrossRef]13. Botek, M.; McKune, A.J.; Krejci, J.; Stejskal, P.; Gaba, A. Change in performance in response to training load adjustment based on autonomic activity. Int. J. Sport. Med. 2014, 35, 482–488. [CrossRef] [PubMed]14. Carrasco-Poyatos, M.; González-Quílez, A.; Martínez-González-moro, I.; Granero-Gallegos, A. HRV-guided training for professional endurance athletes: A protocol for a cluster-randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 5465. [CrossRef]15. Clemente-Suarez, V.J. Periodized training achieves better autonomic modulation and aerobic performance than non-periodized training. J. Sport. Med. Phys. Fitness 2018, 58, 1559–1564. [CrossRef]16. Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sport. Med. 2003, 33, 889–919. [CrossRef]17. Yanlin, C.; Fei, H.; Shengjia, X. Training variables and autonomic nervous system adaption. Chin. J. Tissue Eng. Res. Zhongguo Zu Zhi Gong Cheng Yan Jiu 2020, 24, 312–319. [CrossRef]18. Buchheit, M.; Chivot, A.; Parouty, J.; Mercier, D.; Al Haddad, H.; Laursen, P.B.; Ahmaidi, S. Monitoring endurance running performance using cardiac parasympathetic function. Eur. J. Appl. Physiol. 2010, 108, 1153–1167. [CrossRef]19. Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European society of cardiology and the North American society of pacing and electrophysiology. Eur. Heart J. 1996, 17, 1043–1065. [CrossRef]20. Palak, K.; Furgała, A.; Biel, P.; Szyguła, Z.; Thor, P.J. Influence of physical training on the function of Autonomic nervous system in professional swimmers. Med. Sport. 2013, 17, 119–124. [CrossRef]21. Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [CrossRef]22. Schmitt, L.; Willis, S.J.; Fardel, A.; Coulmy, N.; Millet, G.P. Live high–train low guided by daily heart rate variability in elite Nordic-skiers. Eur. J. Appl. Physiol. 2018, 118, 419–428. [CrossRef]23. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D.; et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [CrossRef]24. Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovi´c, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, 5928. [CrossRef]25. Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557. [CrossRef]26. Vesterinen, V.; Nummela, A.; Heikura, I.; Laine, T.; Hynynen, E.; Botella, J.; Häkkinen, K. Individual endurance training prescription with heart rate variability. Med. Sci. Sport. Exerc. 2016, 48, 1347–1354. [CrossRef]27. Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Nissilä, J.; Virtanen, P.; Karjalainen, J.; Tulppo, M.P. Daily exercise prescription on the basis of hr variability among men and women. Med. Sci. Sport. Exerc. 2010, 42, 1355–1363. [CrossRef]28. Da Silva, D.F.; Ferraro, Z.M.; Adamo, K.B.; Machado, F.A. Endurance running training individually guided by HRV in ultrained women. J. Strength Cond. Res. 2019, 33, 736–746. [CrossRef]29. Frandsen, J.; Vest, S.D.; Larsen, S.; Dela, F.; Helge, J.W. Maximal fat oxidation is related to performance in an ironman triathlon. Int. J. Sport. Med. 2017, 38, 975–982. [CrossRef]30. Tamburs, N.Y.; Rebelo, A.C.S.; Cesar, M.D.C.; Catai, A.M.; Takahashi, A.C.D.M.; Andrade, C.P.; Porta, A.; Silva, E.D. Relationship between heart rate variability and VO2 peak in active women. Rev. Bras. Med. Esporte 2014, 20, 354–358. [CrossRef]31. Vesterinen, V.; Hakkinen, K.; Hynynen, E.; Mikkola, J.; Hokka, L.; Nummela, A. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand. J. Med. Sci. Sport. 2013, 23, 171–180. [CrossRef]32. Kiviniemi, A.M.; Tulppo, M.P.; Eskelinen, J.J.; Savolainen, A.M.; Kapanen, J.; Heinonen, I.H.A.; Hautala, A.J.; Hannukainen, J.C.; Kalliokoski, K.K. Autonomic function predicts fitness response to short-term high-intensity interval training. Int. J. Sport. Med. 2015, 36, 915–921. [CrossRef]33. Schmitt, L.; Regnard, J.; Parmentier, A.L.; Mauny, F.; Mourot, L.; Coulmy, N.; Millet, G.P. Typology of fatigue by heart rate variability analysis in elite Nordic-skiers. Int. J. Sport. Med. 2015, 36, 999–1007. [CrossRef]34. Schmitt, L.; Regnard, J.; Millet, G.P. Monitoring fatigue status with HRV measures in elite athletes: An avenue beyond RMSSD? Front. Physiol. 2015, 6, 343. [CrossRef]35. Bourdillon, N.; Schmitt, L.; Yazdani, S.; Vesin, J.M.; Millet, G.P. Minimal window duration for accurate HRV recording in athletes. Front. Neurosci. 2017, 11. [CrossRef]36. Melo, H.M.; Martins, T.C.; Nascimento, L.M.; Hoeller, A.A.; Walz, R.; Takase, E. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing. Ann. Noninvasive Electrocardiol. 2018, 23, e12565. [CrossRef]37. Saboul, D.; Pialoux, V.; Hautier, C. The impact of breathing on HRV measurements: Implications for the longitudinal follow-up of athletes. Eur. J. Sport Sci. 2013, 13, 534–542. [CrossRef]38. Sandercock, G.R.H.; Bromley, P.D.; Brodie, D.A. The reliability of short-term measurements of heart rate variability. Int. J. Cardiol. 2005, 103, 238–247. [CrossRef]PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/10b76b70-80ae-4237-bc1e-565127c5f2a0/download42fd4ad1e89814f5e4a476b409eb708cMD52ORIGINALEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdfEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdfapplication/pdf5965555https://repositorio.cuc.edu.co/bitstreams/5895c0e7-b851-4b24-bc7e-62632a84d40a/download1f2fe35dc91e99deea1ac767cb59fdeaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/537502a2-222c-40af-a7f1-0d230e59e414/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdf.jpgEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdf.jpgimage/jpeg67062https://repositorio.cuc.edu.co/bitstreams/887e2384-3e7f-4b8a-a33a-e432f766e2e3/downloadfcc5d726b2b855540cf5caedaf08918aMD54TEXTEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdf.txtEffectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements.pdf.txttext/plain47154https://repositorio.cuc.edu.co/bitstreams/89d8990d-cde3-407f-9389-79418c886983/downloadaa83fe7111c0145ab3b7e9e17e4ae578MD5511323/7628oai:repositorio.cuc.edu.co:11323/76282024-09-17 10:15:58.157http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |