Computer-aided diagnosis for tuberculosis classification with water strider optimization algorithm
Computer-aided diagnosis (CAD) models exploit artificial intelligence (AI) for chest X-ray (CXR) examination to identify the presence of tuberculosis (TB) and can improve the feasibility and performance of CXR for TB screening and triage. At the same time, CXR interpretation is a time-consuming and...
- Autores:
-
Escorcia-Gutierrez, José
Soto-Diaz, Roosvel
Madera, Natasha
Soto, Carlos
Burgos-Florez, Francisco
Rodríguez, Alexander
Mansour, Romany F.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10111
- Acceso en línea:
- https://hdl.handle.net/11323/10111
https://repositorio.cuc.edu.co/
- Palabra clave:
- Computer-aided diagnosis
Water strider optimization
Deep learning
Chest x-rays
Transfer learning
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)