Analogía entre el modelo semifísico de base fenomenología y las redes neuronales utilizando como objeto de estudio el crecimiento de biomasa de Chlorella sorokiniana.
El interés hacia el uso de modelos matemáticos como, los semifísicos de base fenomenológica (MSBF) y los de redes neuronales (RNA), con el propósito de predecir y analizar el comportamiento de microrganismos como Chlorella sorokiniana, cada vez aumenta. Esto se debe a que escalar, diseñar y controla...
- Autores:
-
Longa Marroquin, Nicole Dahiana
Londoño Cruz, Manuela
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad ICESI
- Repositorio:
- Repositorio ICESI
- Idioma:
- spa
- OAI Identifier:
- oai:repository.icesi.edu.co:10906/99236
- Acceso en línea:
- http://repository.icesi.edu.co/biblioteca_digital/handle/10906/99236
http://biblioteca2.icesi.edu.co/cgi-olib?oid=360006
- Palabra clave:
- Microbiología predictiva
Modelamiento
Aprendizaje automático
Chlorella sorokiniana
Trabajos de grado
Ingeniería Bioquímica
Departamento Ingeniería Bioquímica
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
Summary: | El interés hacia el uso de modelos matemáticos como, los semifísicos de base fenomenológica (MSBF) y los de redes neuronales (RNA), con el propósito de predecir y analizar el comportamiento de microrganismos como Chlorella sorokiniana, cada vez aumenta. Esto se debe a que escalar, diseñar y controlar un cultivo de este microorganismo a gran escala representa grandes gastos en tiempo y dinero. Sin embargo, el modelado de estos sistemas en la actualidad utilizando los modelos matemáticos en cuestión es un proceso en mejora, debido a que aún se desconoce qué tan precisos son estimando el crecimiento de biomasa de Chlorella sorokiniana. Por tal motivo, en este estudio se comparó un modelo de base fenomenológica y uno de aprendizaje automatizado en la estimación de biomasa de Chlorella sorokiniana teniendo en cuenta el efecto de la irradiancia y una fuente de carbono orgánica, y tomando como punto de referencia los datos experimentales obtenidos en una investigación de la Universidad Icesi. Como resultado, el MSBF obtuvo un porcentaje de error promedio del 11,82%, mientras que el modelo de RNA logró estimar de manera más precisa el comportamiento de la concentración de biomasa microalgal con un porcentaje de error promedio del 6,01%. |
---|