Combining spectral and fractal features for emotion recognition on Electroencephalographic signals
Recent studies have attempted to recognize emotions by extracting spectral and fractal features from electroencephalographic signals; however, up to now none of them have combined these two features to recognize emotions. This paper aims at providing a comparison between an accuracy rate of an appro...
- Autores:
-
Ulloa Villegas, Gonzalo Vicente
Valderrama, Camilo E.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2014
- Institución:
- Universidad ICESI
- Repositorio:
- Repositorio ICESI
- Idioma:
- eng
- OAI Identifier:
- oai:repository.icesi.edu.co:10906/82313
- Acceso en línea:
- https://nebulosa.icesi.edu.co:2180/record/display.uri?eid=2-s2.0-84905403981&origin=resultslist&sort=plf-f&src=s&st1=Combining+spectral+and+fractal+features+for+emotion+recognition+on+Electroencephalographic+signals&st2=&sid=3202df997427afbc60b94886b40ced79&sot=b&sdt=b&sl=113&s=TITLE-ABS-KEY%28Combining+spectral+and+fractal+features+for+emotion+recognition+on+Electroencephalographic+signals%29&relpos=0&citeCnt=0&searchTerm=
https://www.semanticscholar.org/paper/Combining-spectral-and-fractal-features-for-emotio-Valderrama-Ulloa/b058db4685e71c91245a609c54d7bc71f35e7b43
http://hdl.handle.net/10906/82313
- Palabra clave:
- Computación
Ingeniería de sistemas y comunicaciones
Systems engineering
Procedimiento
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/