Development of an Indole-Amide-Based Photoswitchable Cannabinoid Receptor Subtype 1 (CB1R) “Cis-On” Agonist

Activation of the human cannabinoid receptor type 1 (hCB1R) with high spatiotemporal control is useful to study processes involved in different pathologies related to nociception, metabolic alterations, and neurological disorders. To synthesize new agonist ligands for hCB1R, we have designed differe...

Full description

Autores:
Ramírez Rivera, Yesid Andres
Rodríguez Soacha, Diego A
Steinmüller, Sophie AM
Işbilir, Ali
Fender, Julia
Deventer, Marie H
Tutov, Anna
Sotriffer, Christoph
Stove, Christophe P
Lorenz, Kristina
Lohse, Martín J
Hislop, James N
Decker, Michael
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad ICESI
Repositorio:
Repositorio ICESI
Idioma:
eng
OAI Identifier:
oai:repository.icesi.edu.co:10906/104318
Acceso en línea:
http://repository.icesi.edu.co/biblioteca_digital/handle/10906/104318
https://doi.org/10.1021/acschemneuro.2c00160
Palabra clave:
photorimonabant
optical control
photopharmacology
CB1 agonist
G-protein-coupled
receptor
diazocine
Agonists
Receptors
Ligands
Azobenzene
Assays
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:Activation of the human cannabinoid receptor type 1 (hCB1R) with high spatiotemporal control is useful to study processes involved in different pathologies related to nociception, metabolic alterations, and neurological disorders. To synthesize new agonist ligands for hCB1R, we have designed different classes of photoswitchable molecules based on an indole core. The modifications made to the central core have allowed us to understand the molecular characteristics necessary to design an agonist with optimal pharmacological properties. Compound 27a shows high affinity for CB1R (Ki (cis-form) = 0.18 μM), with a marked difference in affinity with respect to its inactive “trans-off” form (CB1R Kitrans/cis ratio = 5.4). The novel compounds were evaluated by radioligand binding studies, receptor internalization, sensor receptor activation (GRABeCB2.0), Western blots for analysis of ERK1/2 activation, NanoBiT βarr2 recruitment, and calcium mobilization assays, respectively. The data show that the novel agonist 27a is a candidate for studying the optical modulation of cannabinoid receptors (CBRs), serving as a new molecular tool for investigating the involvement of hCB1R in disorders associated with the endocannabinoid system.