A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement
Eye fundus image quality represents a significant factor involved in ophthalmic screening. Usually, eye fundus image quality is affected by artefacts, brightness, and contrast hindering ophthalmic diagnosis. This paper presents a conditional generative adversarial network-based method to enhance eye...
- Autores:
-
Pérez, Andrés D.
Perdomo, Oscar
Rios, Hernán
Rodríguez, Francisco
González, Fabio A.
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2020
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1487
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1487
https://doi.org/10.1007/978-3-030-63419-3_19
- Palabra clave:
- Fundus of the eye - Diagnosis
Fondo del ojo - Diagnóstico
Diagnóstico por imagen
Diagnostic imaging
Image quality enhancement
Synthetic quality degradation
Eye fundus image
Conditional generative adversarial network
Mejora de la calidad de la imagen
Degradación sintética de la calidad
Imagen del fondo del ojo
Red adversarial generativa condicional
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
ESCUELAIG2_bd438faf1a2f0a5fdf4f8408d4b056d1 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1487 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement |
title |
A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement |
spellingShingle |
A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement Fundus of the eye - Diagnosis Fondo del ojo - Diagnóstico Diagnóstico por imagen Diagnostic imaging Image quality enhancement Synthetic quality degradation Eye fundus image Conditional generative adversarial network Mejora de la calidad de la imagen Degradación sintética de la calidad Imagen del fondo del ojo Red adversarial generativa condicional |
title_short |
A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement |
title_full |
A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement |
title_fullStr |
A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement |
title_full_unstemmed |
A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement |
title_sort |
A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement |
dc.creator.fl_str_mv |
Pérez, Andrés D. Perdomo, Oscar Rios, Hernán Rodríguez, Francisco González, Fabio A. |
dc.contributor.author.none.fl_str_mv |
Pérez, Andrés D. Perdomo, Oscar Rios, Hernán Rodríguez, Francisco González, Fabio A. |
dc.contributor.researchgroup.spa.fl_str_mv |
GiBiome |
dc.subject.armarc.none.fl_str_mv |
Fundus of the eye - Diagnosis |
topic |
Fundus of the eye - Diagnosis Fondo del ojo - Diagnóstico Diagnóstico por imagen Diagnostic imaging Image quality enhancement Synthetic quality degradation Eye fundus image Conditional generative adversarial network Mejora de la calidad de la imagen Degradación sintética de la calidad Imagen del fondo del ojo Red adversarial generativa condicional |
dc.subject.armarc.spa.fl_str_mv |
Fondo del ojo - Diagnóstico Diagnóstico por imagen |
dc.subject.armarc.eng.fl_str_mv |
Diagnostic imaging |
dc.subject.proposal.spa.fl_str_mv |
Image quality enhancement Synthetic quality degradation Eye fundus image Conditional generative adversarial network Mejora de la calidad de la imagen Degradación sintética de la calidad Imagen del fondo del ojo Red adversarial generativa condicional |
description |
Eye fundus image quality represents a significant factor involved in ophthalmic screening. Usually, eye fundus image quality is affected by artefacts, brightness, and contrast hindering ophthalmic diagnosis. This paper presents a conditional generative adversarial network-based method to enhance eye fundus image quality, which is trained using automatically generated synthetic bad-quality/good-quality image pairs. The method was evaluated in a public eye fundus dataset with three classes: good, usable and bad quality according to specialist annotations with 0.64 Kappa. The proposed method enhanced the image quality from usable to good class in 72.33% of images. Likewise, the image quality was improved from the bad category to usable class, and from bad to good class in 56.21% and 29.49% respectively. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-05-25T21:57:08Z 2021-10-01T17:16:56Z |
dc.date.available.none.fl_str_mv |
2021-05-25 2021-10-01T17:16:56Z |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/CAP_LIB |
format |
http://purl.org/coar/resource_type/c_3248 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0302-9743 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1487 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-030-63419-3_19 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-63419-3_19 |
identifier_str_mv |
0302-9743 10.1007/978-3-030-63419-3_19 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1487 https://doi.org/10.1007/978-3-030-63419-3_19 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.none.fl_str_mv |
volume 12069 |
dc.relation.citationedition.spa.fl_str_mv |
Lecture Notes in Computer Science book series (LNCS, volume 12069) |
dc.relation.citationendpage.spa.fl_str_mv |
194 |
dc.relation.citationstartpage.spa.fl_str_mv |
185 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofbook.spa.fl_str_mv |
Lecture Notes in Computer Science Ophthalmic Medical Image Analysis |
dc.relation.references.eng.fl_str_mv |
Perdomo, O., González, F.A.: A systematic review of deep learning methods applied to ocular images. Cienc. Ing. Neogranad 30(1) (2016). https://doi.org/10.18359/rcin.4242 Gharaibeh, N., Al-Hazaimeh, O.M., Al-Naami, B., Nahar, K.M.: An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images. IJSISE 11(4), 206–216. (2018). IEL. https://doi.org/10.1504/IJSISE.2018.093825 Sahu, S., Singh, A.K., Ghrera, S.P., Elhoseny, M.: An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Opt. Laser Technol. 110, 87–98 (2019). https://doi.org/10.1016/j.optlastec.2018.06.061 CrossRefGoogle Scholar Zhou, M., Jin, K., Wang, S., Ye, J., Qian, D.: Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Trans. Biomed. Eng. 65(3), 521–527 (2017). https://doi.org/10.1109/TBME.2017.2700627 CrossRefGoogle Scholar Singh, B., Jayasree, K.: Implementation of diabetic retinopathy detection system for enhance digital fundus images. IJATIR 7(6), 874–876 (2015) Google Scholar Bandara, A.M.R.R., Giragama, P.W.G.R.M.P.B.: A retinal image enhancement technique for blood vessel segmentation algorithm. ICIIS 1–5 (2017). https://doi.org/10.1109/ICIINFS.2017.8300426 Coye, T.: A novel retinal blood vessel segmentation algorithm for fundus images. In: MATLAB Central File Exchange, January 2017 (2015) Google Scholar Raja, S.S., Vasuki, S.: Screening diabetic retinopathy in developing countries using retinal images. Appl. Med. Inform. 36(1), 13–22 (2015) Google Scholar Wahid, F.F., Sugandhi, K., Raju, G.: Two stage histogram enhancement schemes to improve visual quality of fundus images. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T. (eds.) ICACDS 2018. CCIS, vol. 905, pp. 1–11. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1810-8_1 Yang, R., Xu, M., Wang, Z., Li, T.: Multi-frame quality enhancement for compressed video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp. 6664–6673 (2018). Vu, T., Nguyen, C.V., Pham, T.X., Luu, T.M., Yoo, C.D.: Fast and efficient image quality enhancement via desubpixel convolutional neural networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 243–259. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_16 Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017). https://doi.org/10.1109/CVPR.2017.632 Yoo, T.K., Choi, J.Y., Kim, H.K.: CycleGAN-based deep learning technique for artifact reduction in fundus photography. Graefes Arch. Clin. Exp. Ophthalmol. 258(8), 1631–1637 (2020). https://doi.org/10.1007/s00417-020-04709-5 Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems, pp. 474–485, Academic Press (1994) Fu, H., et al.: Evaluation of retinal image quality assessment networks in different color-spaces. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_6 Pérez, A.D., Perdomo, O., González, F.A.: A lightweight deep learning model for mobile eye fundus image quality assessment. In: Proceedings of SPIE 11330, 15th International Symposium on Medical Information Processing and Analysis (SIPAIM) (2020). Bartling, H., Wanger, P., Martin, L.: Automated quality evaluation of digital fundus photographs. Acta Ophthalmol. 87(6), 643–647 (2009). https://doi.org/10.1111/j.1755-3768.2008.01321.x |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Verlag |
dc.publisher.place.spa.fl_str_mv |
Alemania |
dc.source.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007%2F978-3-030-63419-3_19 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1487/5/A%20Conditional%20Generative%20Adversarial%20Network-Based%20Method%20for%20Eye%20Fundus%20Image%20Quality%20Enhancement.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1487/4/A%20Conditional%20Generative%20Adversarial%20Network-Based%20Method%20for%20Eye%20Fundus%20Image%20Quality%20Enhancement.png https://repositorio.escuelaing.edu.co/bitstream/001/1487/6/A%20Conditional%20Generative%20Adversarial%20Network-Based%20Method%20for%20Eye%20Fundus%20Image%20Quality%20Enhancement.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1487/3/A%20Conditional%20Generative%20Adversarial%20Network-Based%20Method%20for%20Eye%20Fundus%20Image%20Quality%20Enhancement.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1487/1/license.txt |
bitstream.checksum.fl_str_mv |
dde5ba637ef0373e3f32b19ef8615951 d6f42ffcd9536829a6bfb671a02cc163 6365184f97a991601c203e9dc9fc733a ce17bbb4d4f1cbe9a2413e4ea88bb0b2 5a7ca94c2e5326ee169f979d71d0f06e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355580811214848 |
spelling |
Pérez, Andrés D.7244cff784b33a16134298e56456744e600Perdomo, Oscarff88a6a3395dc44ade411d38bf28c565600Rios, Hernánf0fbb24b7153739bce2a37777758c8a1600Rodríguez, Francisco6bcbed47fc0f204fe6a9bc98228721ea600González, Fabio A.443fd5ab620c3973efa2055ce58761da600GiBiome2021-05-25T21:57:08Z2021-10-01T17:16:56Z2021-05-252021-10-01T17:16:56Z20200302-9743https://repositorio.escuelaing.edu.co/handle/001/148710.1007/978-3-030-63419-3_19https://doi.org/10.1007/978-3-030-63419-3_19Eye fundus image quality represents a significant factor involved in ophthalmic screening. Usually, eye fundus image quality is affected by artefacts, brightness, and contrast hindering ophthalmic diagnosis. This paper presents a conditional generative adversarial network-based method to enhance eye fundus image quality, which is trained using automatically generated synthetic bad-quality/good-quality image pairs. The method was evaluated in a public eye fundus dataset with three classes: good, usable and bad quality according to specialist annotations with 0.64 Kappa. The proposed method enhanced the image quality from usable to good class in 72.33% of images. Likewise, the image quality was improved from the bad category to usable class, and from bad to good class in 56.21% and 29.49% respectively.La calidad de la imagen del fondo del ojo representa un factor importante en el cribado oftálmico. Normalmente, la calidad de la imagen del fondo del ojo se ve afectada por artefactos, brillo y contraste, lo que dificulta el diagnóstico oftalmológico. Este artículo presenta un método basado en una red generativa condicional para mejorar la calidad de la imagen del fondo del ojo, que se entrena utilizando pares de imágenes sintéticas de mala calidad y buena calidad generadas automáticamente. El método fue evaluado en un conjunto de datos de fondo de ojo público con tres clases: buena, utilizable y mala calidad según las anotaciones de los especialistas con 0,64 Kappa. El método propuesto mejoró la calidad de la imagen de la clase utilizable a la buena en el 72,33% de las imágenes. Asimismo, la calidad de la imagen mejoró de la categoría mala a la clase utilizable, y de la mala a la buena en el 56,21% y el 29,49% respectivamente.Pérez A.D., Perdomo O., Rios H., Rodríguez F., González F.A. (2020) A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement. In: Fu H., Garvin M.K., MacGillivray T., Xu Y., Zheng Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science, vol 12069. Springer, Cham. https://doi.org/10.1007/978-3-030-63419-3_1910 páginasapplication/pdfengSpringer VerlagAlemaniavolume 12069Lecture Notes in Computer Science book series (LNCS, volume 12069)194185N/ALecture Notes in Computer ScienceOphthalmic Medical Image AnalysisPerdomo, O., González, F.A.: A systematic review of deep learning methods applied to ocular images. Cienc. Ing. Neogranad 30(1) (2016). https://doi.org/10.18359/rcin.4242Gharaibeh, N., Al-Hazaimeh, O.M., Al-Naami, B., Nahar, K.M.: An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images. IJSISE 11(4), 206–216. (2018). IEL. https://doi.org/10.1504/IJSISE.2018.093825Sahu, S., Singh, A.K., Ghrera, S.P., Elhoseny, M.: An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Opt. Laser Technol. 110, 87–98 (2019). https://doi.org/10.1016/j.optlastec.2018.06.061 CrossRefGoogle ScholarZhou, M., Jin, K., Wang, S., Ye, J., Qian, D.: Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Trans. Biomed. Eng. 65(3), 521–527 (2017). https://doi.org/10.1109/TBME.2017.2700627 CrossRefGoogle ScholarSingh, B., Jayasree, K.: Implementation of diabetic retinopathy detection system for enhance digital fundus images. IJATIR 7(6), 874–876 (2015) Google ScholarBandara, A.M.R.R., Giragama, P.W.G.R.M.P.B.: A retinal image enhancement technique for blood vessel segmentation algorithm. ICIIS 1–5 (2017). https://doi.org/10.1109/ICIINFS.2017.8300426Coye, T.: A novel retinal blood vessel segmentation algorithm for fundus images. In: MATLAB Central File Exchange, January 2017 (2015) Google ScholarRaja, S.S., Vasuki, S.: Screening diabetic retinopathy in developing countries using retinal images. Appl. Med. Inform. 36(1), 13–22 (2015) Google ScholarWahid, F.F., Sugandhi, K., Raju, G.: Two stage histogram enhancement schemes to improve visual quality of fundus images. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T. (eds.) ICACDS 2018. CCIS, vol. 905, pp. 1–11. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1810-8_1Yang, R., Xu, M., Wang, Z., Li, T.: Multi-frame quality enhancement for compressed video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp. 6664–6673 (2018).Vu, T., Nguyen, C.V., Pham, T.X., Luu, T.M., Yoo, C.D.: Fast and efficient image quality enhancement via desubpixel convolutional neural networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 243–259. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_16Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017). https://doi.org/10.1109/CVPR.2017.632Yoo, T.K., Choi, J.Y., Kim, H.K.: CycleGAN-based deep learning technique for artifact reduction in fundus photography. Graefes Arch. Clin. Exp. Ophthalmol. 258(8), 1631–1637 (2020). https://doi.org/10.1007/s00417-020-04709-5Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems, pp. 474–485, Academic Press (1994)Fu, H., et al.: Evaluation of retinal image quality assessment networks in different color-spaces. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_6Pérez, A.D., Perdomo, O., González, F.A.: A lightweight deep learning model for mobile eye fundus image quality assessment. In: Proceedings of SPIE 11330, 15th International Symposium on Medical Information Processing and Analysis (SIPAIM) (2020).Bartling, H., Wanger, P., Martin, L.: Automated quality evaluation of digital fundus photographs. Acta Ophthalmol. 87(6), 643–647 (2009). https://doi.org/10.1111/j.1755-3768.2008.01321.xhttps://link.springer.com/chapter/10.1007%2F978-3-030-63419-3_19A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality EnhancementCapítulo - Parte de Libroinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbFundus of the eye - DiagnosisFondo del ojo - DiagnósticoDiagnóstico por imagenDiagnostic imagingImage quality enhancementSynthetic quality degradationEye fundus imageConditional generative adversarial networkMejora de la calidad de la imagenDegradación sintética de la calidadImagen del fondo del ojoRed adversarial generativa condicionalORIGINALA Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement.pdfA Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement.pdfCapítulo - Parte de Libroapplication/pdf5425818https://repositorio.escuelaing.edu.co/bitstream/001/1487/5/A%20Conditional%20Generative%20Adversarial%20Network-Based%20Method%20for%20Eye%20Fundus%20Image%20Quality%20Enhancement.pdfdde5ba637ef0373e3f32b19ef8615951MD55metadata only accessTHUMBNAILA Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement.pngA Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement.pngimage/png136569https://repositorio.escuelaing.edu.co/bitstream/001/1487/4/A%20Conditional%20Generative%20Adversarial%20Network-Based%20Method%20for%20Eye%20Fundus%20Image%20Quality%20Enhancement.pngd6f42ffcd9536829a6bfb671a02cc163MD54open accessA Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement.pdf.jpgA Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement.pdf.jpgGenerated Thumbnailimage/jpeg11781https://repositorio.escuelaing.edu.co/bitstream/001/1487/6/A%20Conditional%20Generative%20Adversarial%20Network-Based%20Method%20for%20Eye%20Fundus%20Image%20Quality%20Enhancement.pdf.jpg6365184f97a991601c203e9dc9fc733aMD56metadata only accessTEXTA Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement.pdf.txtA Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement.pdf.txtExtracted texttext/plain4https://repositorio.escuelaing.edu.co/bitstream/001/1487/3/A%20Conditional%20Generative%20Adversarial%20Network-Based%20Method%20for%20Eye%20Fundus%20Image%20Quality%20Enhancement.pdf.txtce17bbb4d4f1cbe9a2413e4ea88bb0b2MD53open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1487/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open access001/1487oai:repositorio.escuelaing.edu.co:001/14872022-11-25 03:00:10.691metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |