A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement
Eye fundus image quality represents a significant factor involved in ophthalmic screening. Usually, eye fundus image quality is affected by artefacts, brightness, and contrast hindering ophthalmic diagnosis. This paper presents a conditional generative adversarial network-based method to enhance eye...
- Autores:
-
Pérez, Andrés D.
Perdomo, Oscar
Rios, Hernán
Rodríguez, Francisco
González, Fabio A.
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2020
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1487
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1487
https://doi.org/10.1007/978-3-030-63419-3_19
- Palabra clave:
- Fundus of the eye - Diagnosis
Fondo del ojo - Diagnóstico
Diagnóstico por imagen
Diagnostic imaging
Image quality enhancement
Synthetic quality degradation
Eye fundus image
Conditional generative adversarial network
Mejora de la calidad de la imagen
Degradación sintética de la calidad
Imagen del fondo del ojo
Red adversarial generativa condicional
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
Summary: | Eye fundus image quality represents a significant factor involved in ophthalmic screening. Usually, eye fundus image quality is affected by artefacts, brightness, and contrast hindering ophthalmic diagnosis. This paper presents a conditional generative adversarial network-based method to enhance eye fundus image quality, which is trained using automatically generated synthetic bad-quality/good-quality image pairs. The method was evaluated in a public eye fundus dataset with three classes: good, usable and bad quality according to specialist annotations with 0.64 Kappa. The proposed method enhanced the image quality from usable to good class in 72.33% of images. Likewise, the image quality was improved from the bad category to usable class, and from bad to good class in 56.21% and 29.49% respectively. |
---|