Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker

The constant growth of the population with mobility impairments has led to the development of several gait assistance devices. Among these, smart walkers have emerged to provide physical and cognitive interactions during rehabilitation and assistance therapies, by means of robotic and electronic tec...

Full description

Autores:
Sierra M., Sergio D.
Garzón, Mario
Múnera, Marcela
Cifuentes, Carlos A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3347
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3347
https://repositorio.escuelaing.edu.co/
Palabra clave:
Robótica médica
Robotics in medicine
Aparatos fisiológicos
Physiological apparatus
Tecnología médica
Medical technology
Caminadores (Aparatos ortopédicos)
Walkers (Orthopedic apparatus)
Andador inteligente
Interacción hombre-robot-medio ambiente
Estrategias de control
Control compartido
Asistencia para caminar
Rehabilitación de la marcha
Smart walker
Human–robot–environment interaction
Control strategies
Shared control
Gait assistance
Gait rehabilitation
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_b02174396bf54f1f6cb2b0c05d7b1e97
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3347
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker
title Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker
spellingShingle Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker
Robótica médica
Robotics in medicine
Aparatos fisiológicos
Physiological apparatus
Tecnología médica
Medical technology
Caminadores (Aparatos ortopédicos)
Walkers (Orthopedic apparatus)
Andador inteligente
Interacción hombre-robot-medio ambiente
Estrategias de control
Control compartido
Asistencia para caminar
Rehabilitación de la marcha
Smart walker
Human–robot–environment interaction
Control strategies
Shared control
Gait assistance
Gait rehabilitation
title_short Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker
title_full Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker
title_fullStr Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker
title_full_unstemmed Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker
title_sort Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker
dc.creator.fl_str_mv Sierra M., Sergio D.
Garzón, Mario
Múnera, Marcela
Cifuentes, Carlos A.
dc.contributor.author.none.fl_str_mv Sierra M., Sergio D.
Garzón, Mario
Múnera, Marcela
Cifuentes, Carlos A.
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Robótica médica
Robotics in medicine
Aparatos fisiológicos
Physiological apparatus
Tecnología médica
Medical technology
Caminadores (Aparatos ortopédicos)
Walkers (Orthopedic apparatus)
topic Robótica médica
Robotics in medicine
Aparatos fisiológicos
Physiological apparatus
Tecnología médica
Medical technology
Caminadores (Aparatos ortopédicos)
Walkers (Orthopedic apparatus)
Andador inteligente
Interacción hombre-robot-medio ambiente
Estrategias de control
Control compartido
Asistencia para caminar
Rehabilitación de la marcha
Smart walker
Human–robot–environment interaction
Control strategies
Shared control
Gait assistance
Gait rehabilitation
dc.subject.proposal.spa.fl_str_mv Andador inteligente
Interacción hombre-robot-medio ambiente
Estrategias de control
Control compartido
Asistencia para caminar
Rehabilitación de la marcha
dc.subject.proposal.eng.fl_str_mv Smart walker
Human–robot–environment interaction
Control strategies
Shared control
Gait assistance
Gait rehabilitation
description The constant growth of the population with mobility impairments has led to the development of several gait assistance devices. Among these, smart walkers have emerged to provide physical and cognitive interactions during rehabilitation and assistance therapies, by means of robotic and electronic technologies. In this sense, this paper presents the development and implementation of a human–robot–environment interface on a robotic platform that emulates a smart walker, the AGoRA Walker. The interface includes modules such as a navigation system, a human detection system, a safety rules system, a user interaction system, a social interaction system and a set of autonomous and shared control strategies. The interface was validated through several tests on healthy volunteers with no gait impairments. The platform performance and usability was assessed, finding natural and intuitive interaction over the implemented control strategies.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2024-10-25T17:48:01Z
dc.date.available.none.fl_str_mv 2024-10-25T17:48:01Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1424-8220
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3347
dc.identifier.eissn.spa.fl_str_mv 1424-8220
dc.identifier.instname.spa.fl_str_mv Escuela Colombiana de Ingeniería Julio Garavito
dc.identifier.reponame.spa.fl_str_mv Repositorio Digital
dc.identifier.repourl.spa.fl_str_mv https://repositorio.escuelaing.edu.co/
identifier_str_mv 1424-8220
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio Digital
url https://repositorio.escuelaing.edu.co/handle/001/3347
https://repositorio.escuelaing.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Vol 19, 2019
dc.relation.citationendpage.spa.fl_str_mv 2926
dc.relation.citationstartpage.spa.fl_str_mv 2897
dc.relation.citationvolume.spa.fl_str_mv 19
dc.relation.ispartofjournal.eng.fl_str_mv Sensors
dc.relation.references.spa.fl_str_mv Buchman, A.S.; Boyle, P.A.; Leurgans, S.E.; Barnes, L.L.; Bennett, D.A. Cognitive Function is Associated with the Development of Mobility Impairments in Community-Dwelling Elders. Am. J. Geriatr. Psychiatry 2011, 19, 571–580. [CrossRef] [PubMed]
Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly. Wien. Klin. Wochenschr. 2017, 129, 81–95. [CrossRef] [PubMed]
Mrozowski, J.; Awrejcewicz, J.; Bamberski, P. Analysis of stability of the human gait. J. Theor. Appl. Mech. 2007, 45, 91–98.
Cifuentes, C.A.; Frizera, A. Human-Robot Interaction Strategies for Walker-Assisted Locomotion; Springer Tracts in Advanced Robotics; Springer: Cham, Switzerland, 2016; Volume 115, p. 105. [CrossRef]
Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1–19. [CrossRef]
Gheno, R.; Cepparo, J.M.; Rosca, C.E.; Cotten, A. Musculoskeletal Disorders in the Elderly. J. Clin. Imaging Sci. 2012, 2, 39. [CrossRef]
World Health Organization. Disability and Health. 2018. Available online: https://www.who.int/newsroom/fact-sheets/detail/disability-and-health (accessed on 29 June 2019).
World Health Organization. World Report on Disability 2011; World Health Organization: Geneva, Switzerland, 2011.
World Health Organization. Ageing and Health; World Health Organization: Geneva, Switzerland, 2018.
The World Bank. Disability Inclusion. 2018. Available online: https://www.worldbank.org/en/topic/ disability (accessed on 29 June 2019).
Pedersen, M.M.; Holt, N.E.; Grande, L.; Kurlinski, L.A.; Beauchamp, M.K.; Kiely, D.K.; Petersen, J.; Leveille, S.; Bean, J.F. Mild cognitive impairment status and mobility performance: An analysis from the Boston RISE study. J. Gerontol. Ser. Biol. Sci. Med. Sci. 2014, 69, 1511–1518. [CrossRef]
Brown, C.J.; Flood, K.L. Mobility limitation in the older patient: A clinical review. JAMA J. Am. Med. Assoc. 2013, 310, 1168–1177. [CrossRef]
Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018, [CrossRef]
Martins, M.M.; Frizera-Neto, A.; Urendes, E.; dos Santos, C.; Ceres, R.; Bastos-Filho, T. A novel human-machine interface for guiding: The NeoASAS smart walker. In Proceedings of the IEEE 2012 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC), Manaus, Brazil, 9–11 January 2012; pp. 1–7. [CrossRef]
Bateni, H.; Maki, B.E. Assistive devices for balance and mobility: Benefits, demands, and adverse consequences. Arch. Phys. Med. Rehabil. 2005, 86, 134–145. [CrossRef]
Neto, A.F.; Elias, A.; Cifuentes, C.; Rodriguez, C.; Bastos, T.; Carelli, R. Smart Walkers: Advanced Robotic Human Walking-Aid Systems. In Springer Tracts in Advanced Robotics 106 Intelligent Assistive Robots Recent Advances in Assistive Robotics; Springer: Cham, Switzerland, 2015; pp. 103–131. [CrossRef]
Geravand, M.; Werner, C.; Hauer, K.; Peer, A. An Integrated Decision Making Approach for Adaptive Shared Control of Mobility Assistance Robots. Int. J. Soc. Robot. 2016, 8, 631–648. [CrossRef]
Mitzner, T.L.; Chen, T.L.; Kemp, C.C.; Rogers, W.A. Identifying the Potential for Robotics to Assist Older Adults in Different Living Environments. Int. J. Soc. Robot. 2014, 6, 213–227. [CrossRef] [PubMed]
Jenkins, S.; Draper, H. Care, Monitoring, and Companionship: Views on Care Robots from Older People and Their Carers. Int. J. Soc. Robot. 2015, 7, 673–683. [CrossRef]
Martins, M.; Santos, C.; Frizera, A.; Ceres, R. A review of the functionalities of smart walkers. Med. Eng. Phys. 2015, 37, 917–928. [CrossRef] [PubMed]
Martins, M.; Santos, C.; Seabra, E.; Frizera, A.; Ceres, R. Design, implementation and testing of a new user interface for a smart walker. In Proceedings of the 2014 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Espinho, Portugal, 14–15 May 2014; pp. 217–222. [CrossRef]
Lacey, G.J.; Rodriguez-Losada, D. The evolution of guido. IEEE Robot. Autom. Mag. 2008, 15, 75–83. [CrossRef]
Morris, A.; Donamukkala, R.; Kapuria, A.; Steinfeld, A.; Matthews, J.; Dunbar-Jacob, J.; Thrun, S. A robotic walker that provides guidance. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 25–30. [CrossRef]
Alves, J.; Seabra, E.; Caetano, I.; Santos, C.P. Overview of the ASBGo++ Smart Walker. In Proceedings of the 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), Coimbra, Portugal, 16–18 February 2017; pp. 1–4. [CrossRef]
Caetano, I.; Alves, J.; Goncalves, J.; Martins, M.; Santos, C.P. Development of a Biofeedback Approach Using Body Tracking with Active Depth Sensor in ASBGo Smart Walker. In Proceedings of the 2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC), Bragança, Portugal, 4–6 May 2016; pp. 241–246. [CrossRef]
Lee, G.; Ohnuma, T.; Chong, N.Y. Design and control of JAIST active robotic walker. Intell. Serv. Robot. 2010, 3, 125–135. [CrossRef]
Lee, G.; Jung, E.J.; Ohnuma, T.; Chong, N.Y.; Yi, B.J. JAIST Robotic Walker control based on a two-layered Kalman filter. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3682–3687. [CrossRef]
Jiménez, M.F.; Monllor, M.; Frizera, A.; Bastos, T.; Roberti, F.; Carelli, R. Admittance Controller with Spatial Modulation for Assisted Locomotion using a Smart Walker. J. Intell. Robot. Syst. 2019, 94, 621–637. [CrossRef]
Spenko, M.; Yu, H.; Dubowsky, S. Robotic personal aids for mobility and monitoring for the elderly. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 344–351. [CrossRef]
Efthimiou, E.; Fotinea, S.E.; Goulas, T.; Dimou, A.L.; Koutsombogera, M.; Pitsikalis, V.; Maragos, P.; Tzafestas, C. The MOBOT Platform—Showcasing Multimodality in Human-Assistive Robot Interaction; Springer: Cham, Switzerland, 2016; pp. 382–391. [CrossRef]
Efthimiou, E.; Fotinea, S.E.; Goulas, T.; Koutsombogera, M.; Karioris, P.; Vacalopoulou, A.; Rodomagoulakis, I.; Maragos, P.; Tzafestas, C.; Pitsikalis, V.; et al. The MOBOT rollator human-robot interaction model and user evaluation process. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI 2016), Athens, Greece, 6–9 December 2019. [CrossRef]
Papageorgiou, X.S.; Chalvatzaki, G.; Lianos, K.N.; Werner, C.; Hauer, K.; Tzafestas, C.S.; Maragos, P. Experimental validation of human pathological gait analysis for an assisted living intelligent robotic walker. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 20–22 February 2016; pp. 1086–1091. [CrossRef]
Mou, W.H.; Chang, M.F.; Liao, C.K.; Hsu, Y.H.; Tseng, S.H.; Fu, L.C. Context-aware assisted interactive robotic walker for Parkinson’s disease patients. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 329–334. [CrossRef]
Paulo, J.; Peixoto, P.; Nunes, U.J. ISR-AIWALKER: Robotic Walker for Intuitive and Safe Mobility Assistance and Gait Analysis. IEEE Trans. Hum. Mach. Syst. 2017, 47, 1110–1122. [CrossRef]
Garrote, L.; Paulo, J.; Perdiz, J.; Peixoto, P.; Nunes, U.J. Robot-Assisted Navigation for a Robotic Walker with Aided User Intent. In Proceedings of the RO-MAN 2018—27th IEEE International Symposium on Robot and Human Interactive Communication, Nanjing, China, 27 August–1 September 2018; pp. 348–355. [CrossRef]
Huang, C.; Wasson, G.; Alwan, M.; Sheth, P. Shared Navigational Control and User Intent Detection in an Intelligent Walker. 2005. Available online: https://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-02/ FS05-02-010.pdf (accessed on 29 June 2019).
Wachaja, A.; Agarwal, P.; Zink, M.; Adame, M.R.; Möller, K.; Burgard, W. Navigating blind people with walking impairments using a smart walker. Auton. Robot. 2017, 41, 555–573. [CrossRef]
Wasson, G.; Gunderson, J.; Graves, S.; Felder, R. Effective Shared Control in Cooperative Mobility Aids. In Proceedings of the Fourteenth international Florida Artificial intelligence Research Society Conference, Key West, FL, USA, 21–23 May 2001; AAAI Press: Menlo Park, CA, USA, 2001; pp. 509–513.
Wasson, G.; Gunderson, J.; Graves, S.; Felder, R. An assistive robotic agent for pedestrian mobility. In Proceedings of the Fifth International Conference on Autonomous Agents—AGENTS’01, Montreal, QC, Canada, 28 May–1 June 2001; ACM Press: New York, NY, USA, 2001; pp. 169–173. [CrossRef]
Palopoli, L.; Argyros, A.; Birchbauer, J.; Colombo, A.; Fontanelli, D.; Legay, A.; Garulli, A.; Giannitrapani, A.; Macii, D.; Moro, F.; et al. Navigation assistance and guidance of older adults across complex public spaces: The DALi approach. Intell. Serv. Robot. 2015, 8, 77–92. [CrossRef]
Cheng, W.C.; Wu, Y.Z. A user’s intention detection method for smart walker. In Proceedings of the 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), Taiwan, China, 8–10 November 2017; pp. 35–39. [CrossRef]
Ye, J.; Huang, J.; He, J.; Tao, C.; Wang, X. Development of a width-changeable intelligent walking-aid robot. In Proceedings of the 2012 International Symposium on Micro-NanoMechatronics and Human Science (MHS), Nagoya, Japan, 4–7 November 2012; pp. 358–363. [CrossRef]
Hirata, Y.; Hara, A.; Kosuge, K. Passive-type intelligent walking support system “RT Walker”. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 4, pp. 3871–3876. [CrossRef]
Frizera-Neto, A.; Ceres, R.; Rocon, E.; Pons, J.L. Empowering and assisting natural human mobility: The simbiosis walker. Int. J. Adv. Robot. Syst. 2011, 8, 34–50. [CrossRef]
Kulyukin, V.; Kutiyanawala, A.; LoPresti, E.; Matthews, J.; Simpson, R. IWalker: Toward a rollator-mounted wayfinding system for the elderly. In Proceedings of the 2008 IEEE International Conference on RFID (Frequency Identification), Amman, Jordan, 20–22 July 2008; pp. 303–311.
Lu, C.K.; Huang, Y.C.; Lee, C.J. Adaptive guidance system design for the assistive robotic walker. Neurocomputing 2015, 170, 152–160. [CrossRef]
Reyes Adame, M.; Yu, J.; Moeller, K. Mobility Support System for Elderly Blind People with a Smart Walker and a Tactile Map. IFMBE Proc. 2016, 57, 602–607. [CrossRef]
Thorstensson, A.; Nilsson, J.; Carlson, H.; Zomlefer, M.R. Trunk movements in human locomotion. Acta Physiol. Scand. 1984, 121, 9–22. [CrossRef] [PubMed]
Bonnet, V.; Mazzà, C.; McCamley, J.; Cappozzo, A. Use of weighted Fourier linear combiner filters to estimate lower trunk 3D orientation from gyroscope sensors data. J. Neuroeng. Rehabil. 2013, 10, 29. [CrossRef] [PubMed]
Neto, A.F.; Gallego, J.A.; Rocon, E.; Abellanas, A.; Pons, J.L.; Ceres, R. Online Cadence Estimation through Force Interaction in Walker Assisted Gait. In Proceedings of the ISSNIP Biosignals and Biorobotics Conference 2010, Vitoria, Brazil, 4–6 January 2010; pp. 1–5.
Frizera Neto, A.; Gallego, J.A.; Rocon, E.; Pons, J.L.; Ceres, R. Extraction of user’s navigation commands from upper body force interaction in walker assisted gait. BioMed. Eng. Online 2010, 9, 1–16. [CrossRef] [PubMed]
Sierra, S.D.; Molina, J.F.; Gómez, D.A.; Cifuentes, C.A.; Múnera, M.C. Development of an Interface for Human-Robot Interaction on a Robotic Platform for Gait Assistance: AGoRA Smart Walker. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018.
Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [CrossRef]
Fox, D.; Burgard, W.; Dellaert, F.; Thrun, S. Monte Carlo Localization: Efficient Position Estimation for Mobile Robots. In Proceedings of the Sixteenth National Conference on Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial Intelligence, Orlando, FL, USA, 8–22 July 1999; pp. 343–349.
Lu, D.V.; Hershberger, D.; Smart, W.D. Layered costmaps for context-sensitive navigation. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 709–715. [CrossRef]
Fox, D.; Burgard, W.; Thrun, S. The Dynamic Window Approach to Collision Avoidance. Robot. Autom. Mag. 1997, 4, 1–23. [CrossRef]
Rösmann, C.; Feiten, W.; Wösch, T.; Hoffmann, F.; Bertram, T. Trajectory modification considering dynamic constraints of autonomous robots. In Proceedings of the 7th German Conference on Robotics, Munich, Germany, 21–22 May 2012; pp. 74–79.
Fotiadis, E.P.; Garzón, M.; Barrientos, A. Human detection from a mobile robot using fusion of laser and vision information. Sensors 2013, 13, 11603–11635. [CrossRef]
Garzon Oviedo, M.A.; Barrientos, A.; Del Cerro, J.; Alacid, A.; Fotiadis, E.; Rodríguez-Canosa, G.R.; Wang, B.C. Tracking and following pedestrian trajectories, an approach for autonomous surveillance of critical infrastructures. Ind. Robot. Int. J. 2015, 42, 429–440. [CrossRef]
Arras, K.O.; Lau, B.; Grzonka, S.; Luber, M.; Mozos, O.M.; Meyer-Delius, D.; Burgard, W. Range-Based People Detection and Tracking for Socially Enabled Service Robots. In Towards Service Robots for Everyday Environments; Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2012; Volume 76, pp. 235–280. [CrossRef]
Schapire, R.E.; Schapire, R.E. Improved Boosting Algorithms Using Confidence-rated Predictions. Computer 1999, 336, 297–336. [CrossRef]
Zhang, Q.; Pless, R. Extrinsic Calibration of a Camera and Laser Range Finder (improves camera calibration). IROS 2004, 3, 2301–2306. [CrossRef]
Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, 20–25 June 2005; Volume I, pp. 886–893. [CrossRef]
Niculescu-Mizil, A.; Caruana, R. Predicting good probabilities with supervised learning. In Proceedings of the 22nd International Conference on Machine Learning (ICML’05), Bonn, Germany, 7–11 August 2005; pp. 625–632. [CrossRef]
Papadakis, P.; Rives, P.; Spalanzani, A. Adaptive spacing in human-robot interactions. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2627–2632. [CrossRef]
Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425. [CrossRef]
Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory. MIS Q. 2012, 36, 157–178. [CrossRef]
Joost, C.F.; Dodou, D. Five-Point Likert Items: t test versus Mann-Whitney-Wilcoxon. Pract. Assess. Res. Eval. 2010, 15, 1–16.
Blair, R.C.; Higgins, J.J. A Comparison of the Power of Wilcoxon’s Rank-Sum Statistic to That of Student’s t Statistic under Various Nonnormal Distributions. J. Educ. Stat. 1980, 5, 309. [CrossRef]
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 29 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI (Multidisciplinary Digital Publishing Institute)
dc.publisher.place.spa.fl_str_mv Suiza
dc.source.spa.fl_str_mv https://www.mdpi.com/1424-8220/19/13/2897
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3347/4/Human%e2%80%93Robot%e2%80%93Environment%20Interaction%20Interface%20for%20Smart%20Walker%20Assisted%20Gait%20AGoRA%20Walker.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3347/3/Portada%20Human%e2%80%93Robot%e2%80%93Environment%20Interaction%20Interface%20for%20Smart%20Walker%20Assisted%20Gait%20AGoRA%20Walker.PNG
https://repositorio.escuelaing.edu.co/bitstream/001/3347/5/Human%e2%80%93Robot%e2%80%93Environment%20Interaction%20Interface%20for%20Smart%20Walker%20Assisted%20Gait%20AGoRA%20Walker.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3347/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3347/1/Human%e2%80%93Robot%e2%80%93Environment%20Interaction%20Interface%20for%20Smart%20Walker%20Assisted%20Gait%20AGoRA%20Walker.pdf
bitstream.checksum.fl_str_mv 72c8bacbf8b81235ab4e7b4d99ebdfab
0266f539919f7dc84ce166cdcda3563b
91565ec549e17a38b6f8a428558b5ceb
5a7ca94c2e5326ee169f979d71d0f06e
683f49395eab66b23eeff79fe35543a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355583023710208
spelling Sierra M., Sergio D.737e72bd7de516ba4165724b71283ae0Garzón, Marioe287d3d79dfce2a4357b50c72d7a393fMúnera, Marcela8047a30ff2499f8ae5a4e903871b8f95Cifuentes, Carlos A.0b885a45437175ae12e5d0a6f598afc4GiBiome2024-10-25T17:48:01Z2024-10-25T17:48:01Z20191424-8220https://repositorio.escuelaing.edu.co/handle/001/33471424-8220Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/The constant growth of the population with mobility impairments has led to the development of several gait assistance devices. Among these, smart walkers have emerged to provide physical and cognitive interactions during rehabilitation and assistance therapies, by means of robotic and electronic technologies. In this sense, this paper presents the development and implementation of a human–robot–environment interface on a robotic platform that emulates a smart walker, the AGoRA Walker. The interface includes modules such as a navigation system, a human detection system, a safety rules system, a user interaction system, a social interaction system and a set of autonomous and shared control strategies. The interface was validated through several tests on healthy volunteers with no gait impairments. The platform performance and usability was assessed, finding natural and intuitive interaction over the implemented control strategies.El constante crecimiento de la población con problemas de movilidad ha propiciado el desarrollo de varios dispositivos de asistencia para la marcha. Entre ellos, han surgido andadores inteligentes para proporcionar actividad física. e interacciones cognitivas durante las terapias de rehabilitación y asistencia, mediante sistemas robóticos y tecnologías electrónicas. En este sentido, este trabajo presenta el desarrollo e implementación de una interfaz humano-robot-entorno en una plataforma robótica que emula un andador inteligente, el AGoRA Caminante. La interfaz incluye módulos como un sistema de navegación, un sistema de detección humana, un sistema de reglas de seguridad, un sistema de interacción con el usuario, un sistema de interacción social y un conjunto de reglas autónomas. y estrategias de control compartidas. La interfaz fue validada mediante varias pruebas en voluntarios sanos. sin alteraciones de la marcha. Se evaluó el rendimiento y usabilidad de la plataforma, encontrando natural y interacción intuitiva sobre las estrategias de control implementadas.29 páginasapplication/pdfengMDPI (Multidisciplinary Digital Publishing Institute)Suizahttps://www.mdpi.com/1424-8220/19/13/2897Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA WalkerArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol 19, 20192926289719SensorsBuchman, A.S.; Boyle, P.A.; Leurgans, S.E.; Barnes, L.L.; Bennett, D.A. Cognitive Function is Associated with the Development of Mobility Impairments in Community-Dwelling Elders. Am. J. Geriatr. Psychiatry 2011, 19, 571–580. [CrossRef] [PubMed]Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly. Wien. Klin. Wochenschr. 2017, 129, 81–95. [CrossRef] [PubMed]Mrozowski, J.; Awrejcewicz, J.; Bamberski, P. Analysis of stability of the human gait. J. Theor. Appl. Mech. 2007, 45, 91–98.Cifuentes, C.A.; Frizera, A. Human-Robot Interaction Strategies for Walker-Assisted Locomotion; Springer Tracts in Advanced Robotics; Springer: Cham, Switzerland, 2016; Volume 115, p. 105. [CrossRef]Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1–19. [CrossRef]Gheno, R.; Cepparo, J.M.; Rosca, C.E.; Cotten, A. Musculoskeletal Disorders in the Elderly. J. Clin. Imaging Sci. 2012, 2, 39. [CrossRef]World Health Organization. Disability and Health. 2018. Available online: https://www.who.int/newsroom/fact-sheets/detail/disability-and-health (accessed on 29 June 2019).World Health Organization. World Report on Disability 2011; World Health Organization: Geneva, Switzerland, 2011.World Health Organization. Ageing and Health; World Health Organization: Geneva, Switzerland, 2018.The World Bank. Disability Inclusion. 2018. Available online: https://www.worldbank.org/en/topic/ disability (accessed on 29 June 2019).Pedersen, M.M.; Holt, N.E.; Grande, L.; Kurlinski, L.A.; Beauchamp, M.K.; Kiely, D.K.; Petersen, J.; Leveille, S.; Bean, J.F. Mild cognitive impairment status and mobility performance: An analysis from the Boston RISE study. J. Gerontol. Ser. Biol. Sci. Med. Sci. 2014, 69, 1511–1518. [CrossRef]Brown, C.J.; Flood, K.L. Mobility limitation in the older patient: A clinical review. JAMA J. Am. Med. Assoc. 2013, 310, 1168–1177. [CrossRef]Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018, [CrossRef]Martins, M.M.; Frizera-Neto, A.; Urendes, E.; dos Santos, C.; Ceres, R.; Bastos-Filho, T. A novel human-machine interface for guiding: The NeoASAS smart walker. In Proceedings of the IEEE 2012 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC), Manaus, Brazil, 9–11 January 2012; pp. 1–7. [CrossRef]Bateni, H.; Maki, B.E. Assistive devices for balance and mobility: Benefits, demands, and adverse consequences. Arch. Phys. Med. Rehabil. 2005, 86, 134–145. [CrossRef]Neto, A.F.; Elias, A.; Cifuentes, C.; Rodriguez, C.; Bastos, T.; Carelli, R. Smart Walkers: Advanced Robotic Human Walking-Aid Systems. In Springer Tracts in Advanced Robotics 106 Intelligent Assistive Robots Recent Advances in Assistive Robotics; Springer: Cham, Switzerland, 2015; pp. 103–131. [CrossRef]Geravand, M.; Werner, C.; Hauer, K.; Peer, A. An Integrated Decision Making Approach for Adaptive Shared Control of Mobility Assistance Robots. Int. J. Soc. Robot. 2016, 8, 631–648. [CrossRef]Mitzner, T.L.; Chen, T.L.; Kemp, C.C.; Rogers, W.A. Identifying the Potential for Robotics to Assist Older Adults in Different Living Environments. Int. J. Soc. Robot. 2014, 6, 213–227. [CrossRef] [PubMed]Jenkins, S.; Draper, H. Care, Monitoring, and Companionship: Views on Care Robots from Older People and Their Carers. Int. J. Soc. Robot. 2015, 7, 673–683. [CrossRef]Martins, M.; Santos, C.; Frizera, A.; Ceres, R. A review of the functionalities of smart walkers. Med. Eng. Phys. 2015, 37, 917–928. [CrossRef] [PubMed]Martins, M.; Santos, C.; Seabra, E.; Frizera, A.; Ceres, R. Design, implementation and testing of a new user interface for a smart walker. In Proceedings of the 2014 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Espinho, Portugal, 14–15 May 2014; pp. 217–222. [CrossRef]Lacey, G.J.; Rodriguez-Losada, D. The evolution of guido. IEEE Robot. Autom. Mag. 2008, 15, 75–83. [CrossRef]Morris, A.; Donamukkala, R.; Kapuria, A.; Steinfeld, A.; Matthews, J.; Dunbar-Jacob, J.; Thrun, S. A robotic walker that provides guidance. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 25–30. [CrossRef]Alves, J.; Seabra, E.; Caetano, I.; Santos, C.P. Overview of the ASBGo++ Smart Walker. In Proceedings of the 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), Coimbra, Portugal, 16–18 February 2017; pp. 1–4. [CrossRef]Caetano, I.; Alves, J.; Goncalves, J.; Martins, M.; Santos, C.P. Development of a Biofeedback Approach Using Body Tracking with Active Depth Sensor in ASBGo Smart Walker. In Proceedings of the 2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC), Bragança, Portugal, 4–6 May 2016; pp. 241–246. [CrossRef]Lee, G.; Ohnuma, T.; Chong, N.Y. Design and control of JAIST active robotic walker. Intell. Serv. Robot. 2010, 3, 125–135. [CrossRef]Lee, G.; Jung, E.J.; Ohnuma, T.; Chong, N.Y.; Yi, B.J. JAIST Robotic Walker control based on a two-layered Kalman filter. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3682–3687. [CrossRef]Jiménez, M.F.; Monllor, M.; Frizera, A.; Bastos, T.; Roberti, F.; Carelli, R. Admittance Controller with Spatial Modulation for Assisted Locomotion using a Smart Walker. J. Intell. Robot. Syst. 2019, 94, 621–637. [CrossRef]Spenko, M.; Yu, H.; Dubowsky, S. Robotic personal aids for mobility and monitoring for the elderly. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 344–351. [CrossRef]Efthimiou, E.; Fotinea, S.E.; Goulas, T.; Dimou, A.L.; Koutsombogera, M.; Pitsikalis, V.; Maragos, P.; Tzafestas, C. The MOBOT Platform—Showcasing Multimodality in Human-Assistive Robot Interaction; Springer: Cham, Switzerland, 2016; pp. 382–391. [CrossRef]Efthimiou, E.; Fotinea, S.E.; Goulas, T.; Koutsombogera, M.; Karioris, P.; Vacalopoulou, A.; Rodomagoulakis, I.; Maragos, P.; Tzafestas, C.; Pitsikalis, V.; et al. The MOBOT rollator human-robot interaction model and user evaluation process. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI 2016), Athens, Greece, 6–9 December 2019. [CrossRef]Papageorgiou, X.S.; Chalvatzaki, G.; Lianos, K.N.; Werner, C.; Hauer, K.; Tzafestas, C.S.; Maragos, P. Experimental validation of human pathological gait analysis for an assisted living intelligent robotic walker. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 20–22 February 2016; pp. 1086–1091. [CrossRef]Mou, W.H.; Chang, M.F.; Liao, C.K.; Hsu, Y.H.; Tseng, S.H.; Fu, L.C. Context-aware assisted interactive robotic walker for Parkinson’s disease patients. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 329–334. [CrossRef]Paulo, J.; Peixoto, P.; Nunes, U.J. ISR-AIWALKER: Robotic Walker for Intuitive and Safe Mobility Assistance and Gait Analysis. IEEE Trans. Hum. Mach. Syst. 2017, 47, 1110–1122. [CrossRef]Garrote, L.; Paulo, J.; Perdiz, J.; Peixoto, P.; Nunes, U.J. Robot-Assisted Navigation for a Robotic Walker with Aided User Intent. In Proceedings of the RO-MAN 2018—27th IEEE International Symposium on Robot and Human Interactive Communication, Nanjing, China, 27 August–1 September 2018; pp. 348–355. [CrossRef]Huang, C.; Wasson, G.; Alwan, M.; Sheth, P. Shared Navigational Control and User Intent Detection in an Intelligent Walker. 2005. Available online: https://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-02/ FS05-02-010.pdf (accessed on 29 June 2019).Wachaja, A.; Agarwal, P.; Zink, M.; Adame, M.R.; Möller, K.; Burgard, W. Navigating blind people with walking impairments using a smart walker. Auton. Robot. 2017, 41, 555–573. [CrossRef]Wasson, G.; Gunderson, J.; Graves, S.; Felder, R. Effective Shared Control in Cooperative Mobility Aids. In Proceedings of the Fourteenth international Florida Artificial intelligence Research Society Conference, Key West, FL, USA, 21–23 May 2001; AAAI Press: Menlo Park, CA, USA, 2001; pp. 509–513.Wasson, G.; Gunderson, J.; Graves, S.; Felder, R. An assistive robotic agent for pedestrian mobility. In Proceedings of the Fifth International Conference on Autonomous Agents—AGENTS’01, Montreal, QC, Canada, 28 May–1 June 2001; ACM Press: New York, NY, USA, 2001; pp. 169–173. [CrossRef]Palopoli, L.; Argyros, A.; Birchbauer, J.; Colombo, A.; Fontanelli, D.; Legay, A.; Garulli, A.; Giannitrapani, A.; Macii, D.; Moro, F.; et al. Navigation assistance and guidance of older adults across complex public spaces: The DALi approach. Intell. Serv. Robot. 2015, 8, 77–92. [CrossRef]Cheng, W.C.; Wu, Y.Z. A user’s intention detection method for smart walker. In Proceedings of the 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), Taiwan, China, 8–10 November 2017; pp. 35–39. [CrossRef]Ye, J.; Huang, J.; He, J.; Tao, C.; Wang, X. Development of a width-changeable intelligent walking-aid robot. In Proceedings of the 2012 International Symposium on Micro-NanoMechatronics and Human Science (MHS), Nagoya, Japan, 4–7 November 2012; pp. 358–363. [CrossRef]Hirata, Y.; Hara, A.; Kosuge, K. Passive-type intelligent walking support system “RT Walker”. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 4, pp. 3871–3876. [CrossRef]Frizera-Neto, A.; Ceres, R.; Rocon, E.; Pons, J.L. Empowering and assisting natural human mobility: The simbiosis walker. Int. J. Adv. Robot. Syst. 2011, 8, 34–50. [CrossRef]Kulyukin, V.; Kutiyanawala, A.; LoPresti, E.; Matthews, J.; Simpson, R. IWalker: Toward a rollator-mounted wayfinding system for the elderly. In Proceedings of the 2008 IEEE International Conference on RFID (Frequency Identification), Amman, Jordan, 20–22 July 2008; pp. 303–311.Lu, C.K.; Huang, Y.C.; Lee, C.J. Adaptive guidance system design for the assistive robotic walker. Neurocomputing 2015, 170, 152–160. [CrossRef]Reyes Adame, M.; Yu, J.; Moeller, K. Mobility Support System for Elderly Blind People with a Smart Walker and a Tactile Map. IFMBE Proc. 2016, 57, 602–607. [CrossRef]Thorstensson, A.; Nilsson, J.; Carlson, H.; Zomlefer, M.R. Trunk movements in human locomotion. Acta Physiol. Scand. 1984, 121, 9–22. [CrossRef] [PubMed]Bonnet, V.; Mazzà, C.; McCamley, J.; Cappozzo, A. Use of weighted Fourier linear combiner filters to estimate lower trunk 3D orientation from gyroscope sensors data. J. Neuroeng. Rehabil. 2013, 10, 29. [CrossRef] [PubMed]Neto, A.F.; Gallego, J.A.; Rocon, E.; Abellanas, A.; Pons, J.L.; Ceres, R. Online Cadence Estimation through Force Interaction in Walker Assisted Gait. In Proceedings of the ISSNIP Biosignals and Biorobotics Conference 2010, Vitoria, Brazil, 4–6 January 2010; pp. 1–5.Frizera Neto, A.; Gallego, J.A.; Rocon, E.; Pons, J.L.; Ceres, R. Extraction of user’s navigation commands from upper body force interaction in walker assisted gait. BioMed. Eng. Online 2010, 9, 1–16. [CrossRef] [PubMed]Sierra, S.D.; Molina, J.F.; Gómez, D.A.; Cifuentes, C.A.; Múnera, M.C. Development of an Interface for Human-Robot Interaction on a Robotic Platform for Gait Assistance: AGoRA Smart Walker. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018.Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [CrossRef]Fox, D.; Burgard, W.; Dellaert, F.; Thrun, S. Monte Carlo Localization: Efficient Position Estimation for Mobile Robots. In Proceedings of the Sixteenth National Conference on Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial Intelligence, Orlando, FL, USA, 8–22 July 1999; pp. 343–349.Lu, D.V.; Hershberger, D.; Smart, W.D. Layered costmaps for context-sensitive navigation. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 709–715. [CrossRef]Fox, D.; Burgard, W.; Thrun, S. The Dynamic Window Approach to Collision Avoidance. Robot. Autom. Mag. 1997, 4, 1–23. [CrossRef]Rösmann, C.; Feiten, W.; Wösch, T.; Hoffmann, F.; Bertram, T. Trajectory modification considering dynamic constraints of autonomous robots. In Proceedings of the 7th German Conference on Robotics, Munich, Germany, 21–22 May 2012; pp. 74–79.Fotiadis, E.P.; Garzón, M.; Barrientos, A. Human detection from a mobile robot using fusion of laser and vision information. Sensors 2013, 13, 11603–11635. [CrossRef]Garzon Oviedo, M.A.; Barrientos, A.; Del Cerro, J.; Alacid, A.; Fotiadis, E.; Rodríguez-Canosa, G.R.; Wang, B.C. Tracking and following pedestrian trajectories, an approach for autonomous surveillance of critical infrastructures. Ind. Robot. Int. J. 2015, 42, 429–440. [CrossRef]Arras, K.O.; Lau, B.; Grzonka, S.; Luber, M.; Mozos, O.M.; Meyer-Delius, D.; Burgard, W. Range-Based People Detection and Tracking for Socially Enabled Service Robots. In Towards Service Robots for Everyday Environments; Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2012; Volume 76, pp. 235–280. [CrossRef]Schapire, R.E.; Schapire, R.E. Improved Boosting Algorithms Using Confidence-rated Predictions. Computer 1999, 336, 297–336. [CrossRef]Zhang, Q.; Pless, R. Extrinsic Calibration of a Camera and Laser Range Finder (improves camera calibration). IROS 2004, 3, 2301–2306. [CrossRef]Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, 20–25 June 2005; Volume I, pp. 886–893. [CrossRef]Niculescu-Mizil, A.; Caruana, R. Predicting good probabilities with supervised learning. In Proceedings of the 22nd International Conference on Machine Learning (ICML’05), Bonn, Germany, 7–11 August 2005; pp. 625–632. [CrossRef]Papadakis, P.; Rives, P.; Spalanzani, A. Adaptive spacing in human-robot interactions. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2627–2632. [CrossRef]Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425. [CrossRef]Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory. MIS Q. 2012, 36, 157–178. [CrossRef]Joost, C.F.; Dodou, D. Five-Point Likert Items: t test versus Mann-Whitney-Wilcoxon. Pract. Assess. Res. Eval. 2010, 15, 1–16.Blair, R.C.; Higgins, J.J. A Comparison of the Power of Wilcoxon’s Rank-Sum Statistic to That of Student’s t Statistic under Various Nonnormal Distributions. J. Educ. Stat. 1980, 5, 309. [CrossRef]info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbRobótica médicaRobotics in medicineAparatos fisiológicosPhysiological apparatusTecnología médicaMedical technologyCaminadores (Aparatos ortopédicos)Walkers (Orthopedic apparatus)Andador inteligenteInteracción hombre-robot-medio ambienteEstrategias de controlControl compartidoAsistencia para caminarRehabilitación de la marchaSmart walkerHuman–robot–environment interactionControl strategiesShared controlGait assistanceGait rehabilitationTEXTHuman–Robot–Environment Interaction Interface for Smart Walker Assisted Gait AGoRA Walker.pdf.txtHuman–Robot–Environment Interaction Interface for Smart Walker Assisted Gait AGoRA Walker.pdf.txtExtracted texttext/plain89797https://repositorio.escuelaing.edu.co/bitstream/001/3347/4/Human%e2%80%93Robot%e2%80%93Environment%20Interaction%20Interface%20for%20Smart%20Walker%20Assisted%20Gait%20AGoRA%20Walker.pdf.txt72c8bacbf8b81235ab4e7b4d99ebdfabMD54metadata only accessTHUMBNAILPortada Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait AGoRA Walker.PNGPortada Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait AGoRA Walker.PNGimage/png169543https://repositorio.escuelaing.edu.co/bitstream/001/3347/3/Portada%20Human%e2%80%93Robot%e2%80%93Environment%20Interaction%20Interface%20for%20Smart%20Walker%20Assisted%20Gait%20AGoRA%20Walker.PNG0266f539919f7dc84ce166cdcda3563bMD53open accessHuman–Robot–Environment Interaction Interface for Smart Walker Assisted Gait AGoRA Walker.pdf.jpgHuman–Robot–Environment Interaction Interface for Smart Walker Assisted Gait AGoRA Walker.pdf.jpgGenerated Thumbnailimage/jpeg14928https://repositorio.escuelaing.edu.co/bitstream/001/3347/5/Human%e2%80%93Robot%e2%80%93Environment%20Interaction%20Interface%20for%20Smart%20Walker%20Assisted%20Gait%20AGoRA%20Walker.pdf.jpg91565ec549e17a38b6f8a428558b5cebMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3347/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALHuman–Robot–Environment Interaction Interface for Smart Walker Assisted Gait AGoRA Walker.pdfHuman–Robot–Environment Interaction Interface for Smart Walker Assisted Gait AGoRA Walker.pdfapplication/pdf21296465https://repositorio.escuelaing.edu.co/bitstream/001/3347/1/Human%e2%80%93Robot%e2%80%93Environment%20Interaction%20Interface%20for%20Smart%20Walker%20Assisted%20Gait%20AGoRA%20Walker.pdf683f49395eab66b23eeff79fe35543a7MD51metadata only access001/3347oai:repositorio.escuelaing.edu.co:001/33472024-10-26 03:00:20.923metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK