Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists

The constant growth of pathologies affecting human mobility has led to developing of different assistive devices to provide physical and cognitive assistance. Smart walkers are a particular type of these devices since they integrate navigation systems, path-following algorithms, and user interaction...

Full description

Autores:
Garcia A., Daniel E.
Sierra M, Sergio D.
Gomez Vargas, Daniel
Jiménez, Mario F
Múnera, Marcela
Cifuentes, Carlos A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3248
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3248
https://repositorio.escuelaing.edu.co/
Palabra clave:
Rehabilitación médica
Medical rehabilitation
Ingeniería biomédica
Biomedical engineering
Aparatos fisiológicos
Physiological apparatus
Movilidad humana
Rehabilitación
Andadores inteligentes
Feedback visual
Teleoperación
Human mobility
Rehabilitation
Smart walkers
Joystick
Visual feedback
Teleoperation
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_a258db8586f011518d87b76d18244393
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3248
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists
title Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists
spellingShingle Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists
Rehabilitación médica
Medical rehabilitation
Ingeniería biomédica
Biomedical engineering
Aparatos fisiológicos
Physiological apparatus
Movilidad humana
Rehabilitación
Andadores inteligentes
Feedback visual
Teleoperación
Human mobility
Rehabilitation
Smart walkers
Joystick
Visual feedback
Teleoperation
title_short Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists
title_full Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists
title_fullStr Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists
title_full_unstemmed Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists
title_sort Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists
dc.creator.fl_str_mv Garcia A., Daniel E.
Sierra M, Sergio D.
Gomez Vargas, Daniel
Jiménez, Mario F
Múnera, Marcela
Cifuentes, Carlos A.
dc.contributor.author.none.fl_str_mv Garcia A., Daniel E.
Sierra M, Sergio D.
Gomez Vargas, Daniel
Jiménez, Mario F
Múnera, Marcela
Cifuentes, Carlos A.
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Rehabilitación médica
Medical rehabilitation
Ingeniería biomédica
Biomedical engineering
Aparatos fisiológicos
Physiological apparatus
topic Rehabilitación médica
Medical rehabilitation
Ingeniería biomédica
Biomedical engineering
Aparatos fisiológicos
Physiological apparatus
Movilidad humana
Rehabilitación
Andadores inteligentes
Feedback visual
Teleoperación
Human mobility
Rehabilitation
Smart walkers
Joystick
Visual feedback
Teleoperation
dc.subject.proposal.spa.fl_str_mv Movilidad humana
Rehabilitación
Andadores inteligentes
Feedback visual
Teleoperación
dc.subject.proposal.eng.fl_str_mv Human mobility
Rehabilitation
Smart walkers
Joystick
Visual feedback
Teleoperation
description The constant growth of pathologies affecting human mobility has led to developing of different assistive devices to provide physical and cognitive assistance. Smart walkers are a particular type of these devices since they integrate navigation systems, path-following algorithms, and user interaction modules to ensure natural and intuitive interaction. Although these functionalities are often implemented in rehabilitation scenarios, there is a need to actively involve the healthcare professionals in the interaction loop while guaranteeing safety for them and patients. This work presents the validation of two visual feedback strategies for the teleoperation of a simulated robotic walker during an assisted navigation task. For this purpose, a group of 14 clinicians from the rehabilitation area formed the validation group. A simple path-following task was proposed, and the feedback strategies were assessed through the kinematic estimation error (KTE) and a usability survey. A KTE of 0.28 m was obtained for the feedback strategy on the joystick. Additionally, significant differences were found through a Mann–Whitney–Wilcoxon test for the perception of behavior and confidence towards the joystick according to the modes of interaction (p-values of 0.04 and 0.01, respectively). The use of visual feedback with this tool contributes to research areas such as remote management of therapies and monitoring rehabilitation of people’s mobility.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2024-09-05T20:13:50Z
dc.date.available.none.fl_str_mv 2024-09-05T20:13:50Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3248
dc.identifier.eissn.spa.fl_str_mv 1424-8220
dc.identifier.instname.spa.fl_str_mv Universidad Escuela Colombiana de Ingeniería Julio Garavito
dc.identifier.reponame.spa.fl_str_mv Repositorio Digital
dc.identifier.repourl.spa.fl_str_mv https://repositorio.escuelaing.edu.co/
url https://repositorio.escuelaing.edu.co/handle/001/3248
https://repositorio.escuelaing.edu.co/
identifier_str_mv 1424-8220
Universidad Escuela Colombiana de Ingeniería Julio Garavito
Repositorio Digital
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Vol. 21 No. 3521, 2021
dc.relation.citationendpage.spa.fl_str_mv 18
dc.relation.citationissue.spa.fl_str_mv 3521
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 21
dc.relation.ispartofjournal.eng.fl_str_mv Sensors
dc.relation.references.spa.fl_str_mv National Health Service UK. Physiotherapy; National Health Service UK: England, UK, 2018.
Carrera, I.; Moreno, H.A.; Sierra M., S.D.; Campos, A.; Múnera, M.; Cifuentes, C.A. Technologies for Therapy and Assistance of Lower Limb Disabilities: Sit to Stand and Walking. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; Chapter 4, pp. 43–66. [CrossRef]
Carr, J.H.; Shepherd, R.B. Stroke Rehabilitation-Guidelines for Exercise and Training to Optimize Motor Skill, 1st ed.; ButterworthHeinemann: Oxford, UK, 2003.
States, R.A.; Pappas, E.; Salem, Y. Overground physical therapy gait training for chronic stroke patients with mobility deficits. Cochrane Database Syst. Rev. 2009. [CrossRef] [PubMed]
Pollock, A.; Baer, G.; Campbell, P.; Choo, P.L.; Forster, A.; Morris, J.; Pomeroy, V.M.; Langhorne, P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014. [CrossRef] [PubMed]
Sierra M., S.D.; Garzón, M.; Múnera, M.; Cifuentes, C.A. Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker. Sensors 2019, 19, 2897. [CrossRef] [PubMed]
Morone, G.; Paolucci, S.; Cherubini, A.; De Angelis, D.; Venturiero, V.; Coiro, P.; Iosa, M. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 2017, 13, 1303–1311. [CrossRef] [PubMed]
Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1–19. [CrossRef]
Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018, 13, 1–15. [CrossRef]
Belda-Lois, J.M.; Horno, S.M.d.; Bermejo-Bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos, A.; et al. Rehabilitation of gait after stroke: A review towards a top-down approach. J. Neuroeng. Rehabil. 2011, 8, 66. [CrossRef]
Martins, M.; Frizera-Neto, A.; Santos, C.P.; Ceres, R. Review and Classification of Human Gait Training and Rehabilitation Devices; Assistive Technology Research Series; IOS Press Ebook: Amsterdam, The Netherlands, 2011; Chapter Everyday T, pp. 774–781. [CrossRef]
Martins, M.M.; Santos, C.P.; Frizera-Neto, A.; Ceres, R. Assistive mobility devices focusing on Smart Walkers: Classification and review. Robot. Auton. Syst. 2012, 60, 548–562. [CrossRef]
Sierra, S.; Arciniegas, L.; Ballen-Moreno, F.; Gomez-Vargas, D.; Munera, M.; Cifuentes, C.A. Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; pp. 67–93. [CrossRef]
Constantinescu, R.; Leonard, C.; Deeley, C.; Kurlan, R. Assistive devices for gait in Parkinson’s disease. Park. Relat. Disord. 2007, 13, 133–138. [CrossRef
Cifuentes, C.A.; Frizera, A. Human-Robot Interaction Strategies for Walker-Assisted Locomotion; Springer Tracts in Advanced Robotics; Springer: Cham, Switzerland, 2016; Volume 115, p. 105. [CrossRef]
Martins, M.; Santos, C.; Frizera, A.; Ceres, R. A review of the functionalities of smart walkers. Med. Eng. Phys. 2015, 37, 917–928. [CrossRef] [PubMed]
Belas Dos Santos, M.; Barros de Oliveira, C.; Dos Santos, A.; Garabello Pires, C.; Dylewski, V.; Arida, R.M. A Comparative Study of Conventional Physiotherapy versus Robot-Assisted Gait Training Associated to Physiotherapy in Individuals with Ataxia after Stroke. Behav. Neurol. 2018, 2018, 2892065. [CrossRef]
Mehrholz, J.; Elsner, B.; Werner, C.; Kugler, J.; Pohl, M. Electromechanical-assisted training for walking after stroke. In Cochrane Database of Systematic Reviews; Mehrholz, J., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013; doi:10.1002/14651858.CD006185.pub3. [CrossRef]
Dundar, U.; Toktas, H.; Solak, O.; Ulasli, A.M.; Eroglu, S. A Comparative Study of Conventional Physiotherapy Versus Robotic Training Combined with Physiotherapy in Patients with Stroke. Top. Stroke Rehabil. 2014, 21, 453–461. [CrossRef] [PubMed]
Dijkstra, A. Care Dependency. In Dementia in Nursing Homes; Springer: Cham, Switzerland, 2017; pp. 229–248. [CrossRef]
Sathian, K.; Buxbaum, L.J.; Cohen, L.G.; Krakauer, J.W.; Lang, C.E.; Corbetta, M.; Fitzpatrick, S.M. Neurological Principles and Rehabilitation of Action Disorders. Neurorehabilit. Neural Repair 2011, 25, 21S–32S. [CrossRef] [PubMed]
Iosa, M.; Morone, G.; Cherubini, A.; Paolucci, S. The Three Laws of Neurorobotics: A Review on What Neurorehabilitation Robots Should Do for Patients and Clinicians. J. Med. Biol. Eng. 2016, 36, 1–11. [CrossRef]
Aycardi, L.F.; Cifuentes, C.A.; Múnera, M.; Bayón, C.; Ramírez, O.; Lerma, S.; Frizera, A.; Rocon, E. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J. Neuroeng. Rehabil. 2019, 16, 15. [CrossRef]
Sierra M., S.D.; Jimenez, M.F.; Munera, M.C.; Bastos, T.; Frizera-Neto, A.; Cifuentes, C.A. A Therapist Helping Hand for Walker-Assisted Gait Rehabilitation: A Pre-Clinical Assessment. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019; pp. 1–6. [CrossRef]
Opiyo, S.; Zhou, J.; Mwangi, E.; Kai, W.; Sunusi, I. A Review on Teleoperation of Mobile Ground Robots: Architecture and Situation Awareness. Int. J. Control. Autom. Syst. 2020, 19, 1384–1407. [CrossRef]
Rognon, C.; Mintchev, S.; Dell’Agnola, F.; Cherpillod, A.; Atienza, D.; Floreano, D. Flyjacket: An upper body soft exoskeleton for immersive drone control. IEEE Robot. Autom. Lett. 2018, 3, 2362–2369. [CrossRef]
Hou, X. Haptic teleoperation of a multirotor aerial robot using path planning with human intention estimation. Intell. Serv. Robot. 2020, 14, 33–46. [CrossRef]
Jablonowski, M. Beyond drone vision: The embodied telepresence of first-person-view drone flight. Senses Soc. 2020, 15, 344–358. [CrossRef]
Kumar, A.; Sharma, K.; Singh, H.; Naugriya, S.G.; Gill, S.S.; Buyya, R. A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic. Future Gener. Comput. Syst. 2021, 115, 1–19. [CrossRef] [PubMed]
Butner, S.E.; Ghodoussi, M. Transforming a surgical robot for human telesurgery. IEEE Trans. Robot. Autom. 2003, 19, 818–824. [CrossRef]
Ghodoussi, M.; Butner, S.E.; Wang, Y. Robotic surgery-the transatlantic case. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), Washington, DC, USA, 11–15 May 2002; Volume 2, pp. 1882–1888
Diolaiti, N.; Melchiorri, C. Teleoperation of a mobile robot through haptic feedback. In Proceedings of the IEEE International Workshop HAVE Haptic Virtual Environments and Their, Ottawa, ON, Canada, 17–18 November 2002; pp. 67–72.
Solanes, J.E.; Muñoz, A.; Gracia, L.; Martí, A.; Girbés-Juan, V.; Tornero, J. Teleoperation of industrial robot manipulators based on augmented reality. Int. J. Adv. Manuf. Technol. 2020, 111, 1077–1097. [CrossRef]
Lv, H.; Yang, G.; Zhou, H.; Huang, X.; Yang, H.; Pang, Z. Teleoperation of Collaborative Robot for Remote Dementia Care in Home Environments. IEEE J. Transl. Eng. Health Med. 2020, 8, 2168–2372. [CrossRef] [PubMed]
Han, J.; Cho, K.; Jang, I.; Ju, C.; Son, H.I.; Yang, G.H. Development of a shared controller for obstacle avoidance in a teleoperation system. Int. J. Control. Autom. Syst. 2020, 18, 2974–2982. [CrossRef]
Vo, C.P.; To, X.D.; Ahn, K.K. A Novel Force Sensorless Reflecting Control for Bilateral Haptic Teleoperation System. IEEE Access 2020, 8, 96515–96527. [CrossRef]
Eck, U.; Pankratz, F.; Sandor, C.; Klinker, G.; Laga, H. Precise haptic device co-location for visuo-haptic augmented reality. IEEE Trans. Vis. Comput. Graph. 2015, 21, 1427–1441. [CrossRef] [PubMed]
Silva, Y.M.L.R.; Simões, W.C.S.S.; Naves, E.L.M.; Bastos Filho, T.F.; De Lucena, V.F. Teleoperation training environment for new users of electric powered wheelchairs based on multiple driving methods. IEEE Access 2018, 6, 55099–55111. [CrossRef]
Ogata, Y.; Katsumura, M.; Yano, K.; Nakao, T.; Hamada, A.; Torii, K. Joystick Grip for Electric Wheelchair for Tension-AthetosisType Cerebral Palsy. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1666–1669
Narayanan, V.K.; Spalanzani, A.; Babel, M. A semi-autonomous framework for human-aware and user intention driven wheelchair mobility assistance. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4700–4707.
Wada, M.; Kameda, F. A joystick car drive system with seating in a wheelchair. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 2163–2168.
Silva, Y.; Simöes, W.; Teófilo, M.; Naves, E.; Lucena, V. Training environment for electric powered wheelchairs using teleoperation through a head mounted display. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 12–14 January 2018; pp. 1–2.
Ikeda, H.; Toyama, T.; Maki, D.; Sato, K.; Nakano, E. Cooperative step-climbing strategy using an autonomous wheelchair and a robot. Robot. Auton. Syst. 2021, 135, 103670. [CrossRef]
Schettino, V.; Demiris, Y. Inference of user-intention in remote robot wheelchair assistance using multimodal interfaces. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4600–4606.
Shen, J.; Xu, B.; Pei, M.; Jia, Y. A low-cost tele-presence wheelchair system. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2452–2457
Van der Loos, H.M.; Reinkensmeyer, D.J.; Guglielmelli, E. Rehabilitation and health care robotics. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1685–1728.
Ajoudani, A.; Zanchettin, A.M.; Ivaldi, S.; Albu-Schäffer, A.; Kosuge, K.; Khatib, O. Progress and prospects of the human–robot collaboration. Auton. Robot. 2018, 42, 957–975. [CrossRef]
Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative manufacturing with physical human–robot interaction. Robot. Comput. Integr. Manuf. 2016, 40, 1–13. [CrossRef]
Roveda, L.; Maskani, J.; Franceschi, P.; Abdi, A.; Braghin, F.; Tosatti, L.M.; Pedrocchi, N. Model-based reinforcement learning variable impedance control for human-robot collaboration. J. Intell. Robot. Syst. 2020, 100, 417–433. [CrossRef]
Islam, S.; Liu, P.X.; El Saddik, A.; Ashour, R.; Dias, J.; Seneviratne, L.D. Artificial and virtual impedance interaction force reflection-based bilateral shared control for miniature unmanned aerial vehicle. IEEE Trans. Ind. Electron. 2018, 66, 329–337. [CrossRef]
Zhang, Z.; Chen, Y.; Zhang, D.; Xie, J.; Liu, M. A six-dimensional traction force sensor used for human-robot collaboration. Mechatronics 2019, 57, 164–172. [CrossRef]
Deng, X.; Yu, Z.L.; Lin, C.; Gu, Z.; Li, Y. A bayesian shared control approach for wheelchair robot with brain machine interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 28, 328–338. [CrossRef]
Li, Z.; Zhao, S.; Duan, J.; Su, C.Y.; Yang, C.; Zhao, X. Human cooperative wheelchair with brain–machine interaction based on shared control strategy. IEEE/ASME Trans. Mechatron. 2016, 22, 185–195. [CrossRef]
Luo, J.; Lin, Z.; Li, Y.; Yang, C. A teleoperation framework for mobile robots based on shared control. IEEE Robot. Autom. Lett. 2019, 5, 377–384. [CrossRef]
Palopoli, L.; Argyros, A.; Birchbauer, J.; Colombo, A.; Fontanelli, D.; Legay, A.; Garulli, A.; Giannitrapani, A.; Macii, D.; Moro, F.; others. Navigation assistance and guidance of older adults across complex public spaces: The DALi approach. Intell. Serv. Robot. 2015, 8, 77–92. [CrossRef]
Lacey, G.J.; Rodriguez-Losada, D. The evolution of guido. IEEE Robot. Autom. Mag. 2008, 15, 75–83. [CrossRef]
Efthimiou, E.; Fotinea, S.E.; Goulas, T.; Koutsombogera, M.; Karioris, P.; Vacalopoulou, A.; Rodomagoulakis, I.; Maragos, P.; Tzafestas, C.; Pitsikalis, V.; et al. The MOBOT rollator human-robot interaction model and user evaluation process. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8.
Garrote, L.; Paulo, J.; Perdiz, J.; Peixoto, P.; Nunes, U.J. Robot-assisted navigation for a robotic walker with aided user intent. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 348–355.
Jiménez, M.F.; Monllor, M.; Frizera, A.; Bastos, T.; Roberti, F.; Carelli, R. Admittance controller with spatial modulation for assisted locomotion using a smart walker. J. Intell. Robot. Syst. 2019, 94, 621–637. [CrossRef]
Ferrari, F.; Divan, S.; Guerrero, C.; Zenatti, F.; Guidolin, R.; Palopoli, L.; Fontanelli, D. Human–robot interaction analysis for a smart walker for elderly: The ACANTO interactive guidance system. Int. J. Soc. Robot. 2020, 12, 479–492. [CrossRef]
Jiménez, M.F.; Mello, R.C.; Bastos, T.; Frizera, A. Assistive Locomotion Device with Haptic Feedback For Guiding Visually Impaired People. Med. Eng. Phys. 2020. [CrossRef] [PubMed]
Andaluz, V.H.; Roberti, F.; Toibero, J.M.; Carelli, R.; Wagner, B. Adaptive dynamic path following control of an unicycle-like mobile robot. In Proceedings of the International Conference on Intelligent Robotics and Applications, Aachen, Germany, 6–8 December 2011; pp. 563–574
Frizera Neto, A.; Gallego, J.A.; Rocon, E.; Pons, J.L.; Ceres, R. Extraction of user’s navigation commands from upper body force interaction in walker assisted gait. Biomed. Eng. Online 2010, 9, 1–16. [CrossRef] [PubMed]
Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [CrossRef]
Blair, R.C.; Higgins, J.J. A comparison of the power of Wilcoxon’s rank-sum statistic to that of student’s t statistic under various nonnormal distributions. J. Educ. Stat. 1980, 5, 309–335. [CrossRef]
de Winter, J.; Dodou, D. Five-Point Likert Items: T test versus Mann-Whitney-Wilcoxon (Addendum added October 2012). Pract. Assess. Res. Eval. 2010, 15, 11.
Zagermann, J.; Pfeil, U.; Reiterer, H. Measuring cognitive load using eye tracking technology in visual computing. In Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization, Baltimore, MD, USA, 24 October 2016; pp. 78–85.
Oviatt, S. Human-centered design meets cognitive load theory: Designing interfaces that help people think. In Proceedings of the 14th ACM international conference on Multimedia, Santa Barbara, CA, USA, 23–27 October 2006; pp. 871–880.
Hollender, N.; Hofmann, C.; Deneke, M.; Schmitz, B. Integrating cognitive load theory and concepts of human–computer interaction. Comput. Hum. Behav. 2010, 26, 1278–1288. [CrossRef]
Emami, Z.; Chau, T. The effects of visual distractors on cognitive load in a motor imagery brain-computer interface. Behav. Brain Res. 2020, 378, 112240. [CrossRef]
Chen, I.Y.H.; MacDonald, B.; Wunsche, B. Mixed reality simulation for mobile robots. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 232–237.
Miglino, O.; Lund, H.H.; Nolfi, S. Evolving mobile robots in simulated and real environments. Artif. Life 1995, 2, 417–434. [CrossRef]
Yoon, H.U.; Wang, R.F.; Hutchinson, S.A.; Hur, P. Customizing haptic and visual feedback for assistive human–robot interface and the effects on performance improvement. Robot. Auton. Syst. 2017, 91, 258–269. [CrossRef]
Mo, Y.; Song, A.; Qin, H. Analysis and Performance Evaluation of a 3-DOF Wearable Fingertip Device for Haptic Applications. IEEE Access 2019, 7, 170430–170441. [CrossRef]
Pons, J.L. Wearable Robots: Biomechatronic Exoskeletons; John Wiley & Sons: Hoboken, NJ, USA, 2008.
Frizera-Neto, A.; Ceres, R.; Rocon, E.; Pons, J.L. Empowering and assisting natural human mobility: The simbiosis walker. Int. J. Adv. Robot. Syst. 2011, 8, 29. [CrossRef]
Yang, X.; Agrawal, A.; Sreenath, K.; Michael, N. Online adaptive teleoperation via motion primitives for mobile robots. Auton. Robot. 2019, 43, 1357–1373. [CrossRef]
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 18 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.spa.fl_str_mv Basel (Suiza)
dc.source.spa.fl_str_mv https:// doi.org/10.3390/s21103521
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3248/4/Semi-Remote%20Gait%20Assistance%20Interface%20A%20Joystick%20with%20Visual%20Feedback%20Capabilities%20for%20Therapists.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3248/3/Portada%20Semi-Remote%20Gait%20Assistance%20Interface%20A%20Joystick%20with%20Visual%20Feedback%20Capabilities%20for%20Therapists.PNG
https://repositorio.escuelaing.edu.co/bitstream/001/3248/5/Semi-Remote%20Gait%20Assistance%20Interface%20A%20Joystick%20with%20Visual%20Feedback%20Capabilities%20for%20Therapists.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3248/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3248/1/Semi-Remote%20Gait%20Assistance%20Interface%20A%20Joystick%20with%20Visual%20Feedback%20Capabilities%20for%20Therapists.pdf
bitstream.checksum.fl_str_mv e51b2c02a322d0c2675482ced50cfda3
b7da54e3913091e2f82343b49e57e042
2c9f3c415063c5c9cf449b266a026ffa
5a7ca94c2e5326ee169f979d71d0f06e
779f508cd4c09ef9d5611debd0ad63ca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355593481158656
spelling Garcia A., Daniel E.2fa7f1427d3aa0de769f24f1faa96f18Sierra M, Sergio D.fb086ffa7ce4a537ce69e18203277510Gomez Vargas, Daniel5ff3db3ae07cf9b63849c33c764c6401Jiménez, Mario F5df35e1ef0e051a18db476d8d3bf03daMúnera, Marcela8047a30ff2499f8ae5a4e903871b8f95Cifuentes, Carlos A.0b885a45437175ae12e5d0a6f598afc4GiBiome2024-09-05T20:13:50Z2024-09-05T20:13:50Z2021https://repositorio.escuelaing.edu.co/handle/001/32481424-8220Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/The constant growth of pathologies affecting human mobility has led to developing of different assistive devices to provide physical and cognitive assistance. Smart walkers are a particular type of these devices since they integrate navigation systems, path-following algorithms, and user interaction modules to ensure natural and intuitive interaction. Although these functionalities are often implemented in rehabilitation scenarios, there is a need to actively involve the healthcare professionals in the interaction loop while guaranteeing safety for them and patients. This work presents the validation of two visual feedback strategies for the teleoperation of a simulated robotic walker during an assisted navigation task. For this purpose, a group of 14 clinicians from the rehabilitation area formed the validation group. A simple path-following task was proposed, and the feedback strategies were assessed through the kinematic estimation error (KTE) and a usability survey. A KTE of 0.28 m was obtained for the feedback strategy on the joystick. Additionally, significant differences were found through a Mann–Whitney–Wilcoxon test for the perception of behavior and confidence towards the joystick according to the modes of interaction (p-values of 0.04 and 0.01, respectively). The use of visual feedback with this tool contributes to research areas such as remote management of therapies and monitoring rehabilitation of people’s mobility.El crecimiento constante de las patologías que afectan la movilidad humana ha llevado al desarrollo de diferentes dispositivos de asistencia para brindar asistencia física y cognitiva. Los andadores inteligentes son un tipo particular de estos dispositivos, ya que integran sistemas de navegación, algoritmos de seguimiento de trayectorias y módulos de interacción con el usuario para garantizar una interacción natural e intuitiva. Si bien estas funcionalidades se implementan a menudo en escenarios de rehabilitación, existe la necesidad de involucrar activamente a los profesionales de la salud en el ciclo de interacción, al tiempo que se garantiza la seguridad para ellos y los pacientes. Este trabajo presenta la validación de dos estrategias de retroalimentación visual para la teleoperación de un andador robótico simulado durante una tarea de navegación asistida. Para ello, un grupo de 14 médicos del área de rehabilitación conformaron el grupo de validación. Se propuso una tarea simple de seguimiento de trayectorias y las estrategias de retroalimentación se evaluaron a través del error de estimación cinemático (KTE) y una encuesta de usabilidad. Se obtuvo un KTE de 0,28 m para la estrategia de feedback sobre el joystick. Adicionalmente, se encontraron diferencias significativas a través de una prueba de Mann–Whitney–Wilcoxon para la percepción del comportamiento y la confianza hacia el joystick según los modos de interacción (p-valores de 0,04 y 0,01, respectivamente). El uso del feedback visual con esta herramienta contribuye a áreas de investigación como la telegestión de terapias y el seguimiento de la rehabilitación de la movilidad de las personas.18 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Basel (Suiza)https:// doi.org/10.3390/s21103521Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for TherapistsArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 21 No. 3521, 2021183521121SensorsNational Health Service UK. Physiotherapy; National Health Service UK: England, UK, 2018.Carrera, I.; Moreno, H.A.; Sierra M., S.D.; Campos, A.; Múnera, M.; Cifuentes, C.A. Technologies for Therapy and Assistance of Lower Limb Disabilities: Sit to Stand and Walking. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; Chapter 4, pp. 43–66. [CrossRef]Carr, J.H.; Shepherd, R.B. Stroke Rehabilitation-Guidelines for Exercise and Training to Optimize Motor Skill, 1st ed.; ButterworthHeinemann: Oxford, UK, 2003.States, R.A.; Pappas, E.; Salem, Y. Overground physical therapy gait training for chronic stroke patients with mobility deficits. Cochrane Database Syst. Rev. 2009. [CrossRef] [PubMed]Pollock, A.; Baer, G.; Campbell, P.; Choo, P.L.; Forster, A.; Morris, J.; Pomeroy, V.M.; Langhorne, P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014. [CrossRef] [PubMed]Sierra M., S.D.; Garzón, M.; Múnera, M.; Cifuentes, C.A. Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker. Sensors 2019, 19, 2897. [CrossRef] [PubMed]Morone, G.; Paolucci, S.; Cherubini, A.; De Angelis, D.; Venturiero, V.; Coiro, P.; Iosa, M. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 2017, 13, 1303–1311. [CrossRef] [PubMed]Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1–19. [CrossRef]Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018, 13, 1–15. [CrossRef]Belda-Lois, J.M.; Horno, S.M.d.; Bermejo-Bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos, A.; et al. Rehabilitation of gait after stroke: A review towards a top-down approach. J. Neuroeng. Rehabil. 2011, 8, 66. [CrossRef]Martins, M.; Frizera-Neto, A.; Santos, C.P.; Ceres, R. Review and Classification of Human Gait Training and Rehabilitation Devices; Assistive Technology Research Series; IOS Press Ebook: Amsterdam, The Netherlands, 2011; Chapter Everyday T, pp. 774–781. [CrossRef]Martins, M.M.; Santos, C.P.; Frizera-Neto, A.; Ceres, R. Assistive mobility devices focusing on Smart Walkers: Classification and review. Robot. Auton. Syst. 2012, 60, 548–562. [CrossRef]Sierra, S.; Arciniegas, L.; Ballen-Moreno, F.; Gomez-Vargas, D.; Munera, M.; Cifuentes, C.A. Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; pp. 67–93. [CrossRef]Constantinescu, R.; Leonard, C.; Deeley, C.; Kurlan, R. Assistive devices for gait in Parkinson’s disease. Park. Relat. Disord. 2007, 13, 133–138. [CrossRefCifuentes, C.A.; Frizera, A. Human-Robot Interaction Strategies for Walker-Assisted Locomotion; Springer Tracts in Advanced Robotics; Springer: Cham, Switzerland, 2016; Volume 115, p. 105. [CrossRef]Martins, M.; Santos, C.; Frizera, A.; Ceres, R. A review of the functionalities of smart walkers. Med. Eng. Phys. 2015, 37, 917–928. [CrossRef] [PubMed]Belas Dos Santos, M.; Barros de Oliveira, C.; Dos Santos, A.; Garabello Pires, C.; Dylewski, V.; Arida, R.M. A Comparative Study of Conventional Physiotherapy versus Robot-Assisted Gait Training Associated to Physiotherapy in Individuals with Ataxia after Stroke. Behav. Neurol. 2018, 2018, 2892065. [CrossRef]Mehrholz, J.; Elsner, B.; Werner, C.; Kugler, J.; Pohl, M. Electromechanical-assisted training for walking after stroke. In Cochrane Database of Systematic Reviews; Mehrholz, J., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013; doi:10.1002/14651858.CD006185.pub3. [CrossRef]Dundar, U.; Toktas, H.; Solak, O.; Ulasli, A.M.; Eroglu, S. A Comparative Study of Conventional Physiotherapy Versus Robotic Training Combined with Physiotherapy in Patients with Stroke. Top. Stroke Rehabil. 2014, 21, 453–461. [CrossRef] [PubMed]Dijkstra, A. Care Dependency. In Dementia in Nursing Homes; Springer: Cham, Switzerland, 2017; pp. 229–248. [CrossRef]Sathian, K.; Buxbaum, L.J.; Cohen, L.G.; Krakauer, J.W.; Lang, C.E.; Corbetta, M.; Fitzpatrick, S.M. Neurological Principles and Rehabilitation of Action Disorders. Neurorehabilit. Neural Repair 2011, 25, 21S–32S. [CrossRef] [PubMed]Iosa, M.; Morone, G.; Cherubini, A.; Paolucci, S. The Three Laws of Neurorobotics: A Review on What Neurorehabilitation Robots Should Do for Patients and Clinicians. J. Med. Biol. Eng. 2016, 36, 1–11. [CrossRef]Aycardi, L.F.; Cifuentes, C.A.; Múnera, M.; Bayón, C.; Ramírez, O.; Lerma, S.; Frizera, A.; Rocon, E. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J. Neuroeng. Rehabil. 2019, 16, 15. [CrossRef]Sierra M., S.D.; Jimenez, M.F.; Munera, M.C.; Bastos, T.; Frizera-Neto, A.; Cifuentes, C.A. A Therapist Helping Hand for Walker-Assisted Gait Rehabilitation: A Pre-Clinical Assessment. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019; pp. 1–6. [CrossRef]Opiyo, S.; Zhou, J.; Mwangi, E.; Kai, W.; Sunusi, I. A Review on Teleoperation of Mobile Ground Robots: Architecture and Situation Awareness. Int. J. Control. Autom. Syst. 2020, 19, 1384–1407. [CrossRef]Rognon, C.; Mintchev, S.; Dell’Agnola, F.; Cherpillod, A.; Atienza, D.; Floreano, D. Flyjacket: An upper body soft exoskeleton for immersive drone control. IEEE Robot. Autom. Lett. 2018, 3, 2362–2369. [CrossRef]Hou, X. Haptic teleoperation of a multirotor aerial robot using path planning with human intention estimation. Intell. Serv. Robot. 2020, 14, 33–46. [CrossRef]Jablonowski, M. Beyond drone vision: The embodied telepresence of first-person-view drone flight. Senses Soc. 2020, 15, 344–358. [CrossRef]Kumar, A.; Sharma, K.; Singh, H.; Naugriya, S.G.; Gill, S.S.; Buyya, R. A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic. Future Gener. Comput. Syst. 2021, 115, 1–19. [CrossRef] [PubMed]Butner, S.E.; Ghodoussi, M. Transforming a surgical robot for human telesurgery. IEEE Trans. Robot. Autom. 2003, 19, 818–824. [CrossRef]Ghodoussi, M.; Butner, S.E.; Wang, Y. Robotic surgery-the transatlantic case. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), Washington, DC, USA, 11–15 May 2002; Volume 2, pp. 1882–1888Diolaiti, N.; Melchiorri, C. Teleoperation of a mobile robot through haptic feedback. In Proceedings of the IEEE International Workshop HAVE Haptic Virtual Environments and Their, Ottawa, ON, Canada, 17–18 November 2002; pp. 67–72.Solanes, J.E.; Muñoz, A.; Gracia, L.; Martí, A.; Girbés-Juan, V.; Tornero, J. Teleoperation of industrial robot manipulators based on augmented reality. Int. J. Adv. Manuf. Technol. 2020, 111, 1077–1097. [CrossRef]Lv, H.; Yang, G.; Zhou, H.; Huang, X.; Yang, H.; Pang, Z. Teleoperation of Collaborative Robot for Remote Dementia Care in Home Environments. IEEE J. Transl. Eng. Health Med. 2020, 8, 2168–2372. [CrossRef] [PubMed]Han, J.; Cho, K.; Jang, I.; Ju, C.; Son, H.I.; Yang, G.H. Development of a shared controller for obstacle avoidance in a teleoperation system. Int. J. Control. Autom. Syst. 2020, 18, 2974–2982. [CrossRef]Vo, C.P.; To, X.D.; Ahn, K.K. A Novel Force Sensorless Reflecting Control for Bilateral Haptic Teleoperation System. IEEE Access 2020, 8, 96515–96527. [CrossRef]Eck, U.; Pankratz, F.; Sandor, C.; Klinker, G.; Laga, H. Precise haptic device co-location for visuo-haptic augmented reality. IEEE Trans. Vis. Comput. Graph. 2015, 21, 1427–1441. [CrossRef] [PubMed]Silva, Y.M.L.R.; Simões, W.C.S.S.; Naves, E.L.M.; Bastos Filho, T.F.; De Lucena, V.F. Teleoperation training environment for new users of electric powered wheelchairs based on multiple driving methods. IEEE Access 2018, 6, 55099–55111. [CrossRef]Ogata, Y.; Katsumura, M.; Yano, K.; Nakao, T.; Hamada, A.; Torii, K. Joystick Grip for Electric Wheelchair for Tension-AthetosisType Cerebral Palsy. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1666–1669Narayanan, V.K.; Spalanzani, A.; Babel, M. A semi-autonomous framework for human-aware and user intention driven wheelchair mobility assistance. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4700–4707.Wada, M.; Kameda, F. A joystick car drive system with seating in a wheelchair. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 2163–2168.Silva, Y.; Simöes, W.; Teófilo, M.; Naves, E.; Lucena, V. Training environment for electric powered wheelchairs using teleoperation through a head mounted display. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 12–14 January 2018; pp. 1–2.Ikeda, H.; Toyama, T.; Maki, D.; Sato, K.; Nakano, E. Cooperative step-climbing strategy using an autonomous wheelchair and a robot. Robot. Auton. Syst. 2021, 135, 103670. [CrossRef]Schettino, V.; Demiris, Y. Inference of user-intention in remote robot wheelchair assistance using multimodal interfaces. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4600–4606.Shen, J.; Xu, B.; Pei, M.; Jia, Y. A low-cost tele-presence wheelchair system. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2452–2457Van der Loos, H.M.; Reinkensmeyer, D.J.; Guglielmelli, E. Rehabilitation and health care robotics. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1685–1728.Ajoudani, A.; Zanchettin, A.M.; Ivaldi, S.; Albu-Schäffer, A.; Kosuge, K.; Khatib, O. Progress and prospects of the human–robot collaboration. Auton. Robot. 2018, 42, 957–975. [CrossRef]Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative manufacturing with physical human–robot interaction. Robot. Comput. Integr. Manuf. 2016, 40, 1–13. [CrossRef]Roveda, L.; Maskani, J.; Franceschi, P.; Abdi, A.; Braghin, F.; Tosatti, L.M.; Pedrocchi, N. Model-based reinforcement learning variable impedance control for human-robot collaboration. J. Intell. Robot. Syst. 2020, 100, 417–433. [CrossRef]Islam, S.; Liu, P.X.; El Saddik, A.; Ashour, R.; Dias, J.; Seneviratne, L.D. Artificial and virtual impedance interaction force reflection-based bilateral shared control for miniature unmanned aerial vehicle. IEEE Trans. Ind. Electron. 2018, 66, 329–337. [CrossRef]Zhang, Z.; Chen, Y.; Zhang, D.; Xie, J.; Liu, M. A six-dimensional traction force sensor used for human-robot collaboration. Mechatronics 2019, 57, 164–172. [CrossRef]Deng, X.; Yu, Z.L.; Lin, C.; Gu, Z.; Li, Y. A bayesian shared control approach for wheelchair robot with brain machine interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 28, 328–338. [CrossRef]Li, Z.; Zhao, S.; Duan, J.; Su, C.Y.; Yang, C.; Zhao, X. Human cooperative wheelchair with brain–machine interaction based on shared control strategy. IEEE/ASME Trans. Mechatron. 2016, 22, 185–195. [CrossRef]Luo, J.; Lin, Z.; Li, Y.; Yang, C. A teleoperation framework for mobile robots based on shared control. IEEE Robot. Autom. Lett. 2019, 5, 377–384. [CrossRef]Palopoli, L.; Argyros, A.; Birchbauer, J.; Colombo, A.; Fontanelli, D.; Legay, A.; Garulli, A.; Giannitrapani, A.; Macii, D.; Moro, F.; others. Navigation assistance and guidance of older adults across complex public spaces: The DALi approach. Intell. Serv. Robot. 2015, 8, 77–92. [CrossRef]Lacey, G.J.; Rodriguez-Losada, D. The evolution of guido. IEEE Robot. Autom. Mag. 2008, 15, 75–83. [CrossRef]Efthimiou, E.; Fotinea, S.E.; Goulas, T.; Koutsombogera, M.; Karioris, P.; Vacalopoulou, A.; Rodomagoulakis, I.; Maragos, P.; Tzafestas, C.; Pitsikalis, V.; et al. The MOBOT rollator human-robot interaction model and user evaluation process. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8.Garrote, L.; Paulo, J.; Perdiz, J.; Peixoto, P.; Nunes, U.J. Robot-assisted navigation for a robotic walker with aided user intent. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 348–355.Jiménez, M.F.; Monllor, M.; Frizera, A.; Bastos, T.; Roberti, F.; Carelli, R. Admittance controller with spatial modulation for assisted locomotion using a smart walker. J. Intell. Robot. Syst. 2019, 94, 621–637. [CrossRef]Ferrari, F.; Divan, S.; Guerrero, C.; Zenatti, F.; Guidolin, R.; Palopoli, L.; Fontanelli, D. Human–robot interaction analysis for a smart walker for elderly: The ACANTO interactive guidance system. Int. J. Soc. Robot. 2020, 12, 479–492. [CrossRef]Jiménez, M.F.; Mello, R.C.; Bastos, T.; Frizera, A. Assistive Locomotion Device with Haptic Feedback For Guiding Visually Impaired People. Med. Eng. Phys. 2020. [CrossRef] [PubMed]Andaluz, V.H.; Roberti, F.; Toibero, J.M.; Carelli, R.; Wagner, B. Adaptive dynamic path following control of an unicycle-like mobile robot. In Proceedings of the International Conference on Intelligent Robotics and Applications, Aachen, Germany, 6–8 December 2011; pp. 563–574Frizera Neto, A.; Gallego, J.A.; Rocon, E.; Pons, J.L.; Ceres, R. Extraction of user’s navigation commands from upper body force interaction in walker assisted gait. Biomed. Eng. Online 2010, 9, 1–16. [CrossRef] [PubMed]Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [CrossRef]Blair, R.C.; Higgins, J.J. A comparison of the power of Wilcoxon’s rank-sum statistic to that of student’s t statistic under various nonnormal distributions. J. Educ. Stat. 1980, 5, 309–335. [CrossRef]de Winter, J.; Dodou, D. Five-Point Likert Items: T test versus Mann-Whitney-Wilcoxon (Addendum added October 2012). Pract. Assess. Res. Eval. 2010, 15, 11.Zagermann, J.; Pfeil, U.; Reiterer, H. Measuring cognitive load using eye tracking technology in visual computing. In Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization, Baltimore, MD, USA, 24 October 2016; pp. 78–85.Oviatt, S. Human-centered design meets cognitive load theory: Designing interfaces that help people think. In Proceedings of the 14th ACM international conference on Multimedia, Santa Barbara, CA, USA, 23–27 October 2006; pp. 871–880.Hollender, N.; Hofmann, C.; Deneke, M.; Schmitz, B. Integrating cognitive load theory and concepts of human–computer interaction. Comput. Hum. Behav. 2010, 26, 1278–1288. [CrossRef]Emami, Z.; Chau, T. The effects of visual distractors on cognitive load in a motor imagery brain-computer interface. Behav. Brain Res. 2020, 378, 112240. [CrossRef]Chen, I.Y.H.; MacDonald, B.; Wunsche, B. Mixed reality simulation for mobile robots. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 232–237.Miglino, O.; Lund, H.H.; Nolfi, S. Evolving mobile robots in simulated and real environments. Artif. Life 1995, 2, 417–434. [CrossRef]Yoon, H.U.; Wang, R.F.; Hutchinson, S.A.; Hur, P. Customizing haptic and visual feedback for assistive human–robot interface and the effects on performance improvement. Robot. Auton. Syst. 2017, 91, 258–269. [CrossRef]Mo, Y.; Song, A.; Qin, H. Analysis and Performance Evaluation of a 3-DOF Wearable Fingertip Device for Haptic Applications. IEEE Access 2019, 7, 170430–170441. [CrossRef]Pons, J.L. Wearable Robots: Biomechatronic Exoskeletons; John Wiley & Sons: Hoboken, NJ, USA, 2008.Frizera-Neto, A.; Ceres, R.; Rocon, E.; Pons, J.L. Empowering and assisting natural human mobility: The simbiosis walker. Int. J. Adv. Robot. Syst. 2011, 8, 29. [CrossRef]Yang, X.; Agrawal, A.; Sreenath, K.; Michael, N. Online adaptive teleoperation via motion primitives for mobile robots. Auton. Robot. 2019, 43, 1357–1373. [CrossRef]info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbRehabilitación médicaMedical rehabilitationIngeniería biomédicaBiomedical engineeringAparatos fisiológicosPhysiological apparatusMovilidad humanaRehabilitaciónAndadores inteligentesFeedback visualTeleoperaciónHuman mobilityRehabilitationSmart walkersJoystickVisual feedbackTeleoperationTEXTSemi-Remote Gait Assistance Interface A Joystick with Visual Feedback Capabilities for Therapists.pdf.txtSemi-Remote Gait Assistance Interface A Joystick with Visual Feedback Capabilities for Therapists.pdf.txtExtracted texttext/plain67823https://repositorio.escuelaing.edu.co/bitstream/001/3248/4/Semi-Remote%20Gait%20Assistance%20Interface%20A%20Joystick%20with%20Visual%20Feedback%20Capabilities%20for%20Therapists.pdf.txte51b2c02a322d0c2675482ced50cfda3MD54metadata only accessTHUMBNAILPortada Semi-Remote Gait Assistance Interface A Joystick with Visual Feedback Capabilities for Therapists.PNGPortada Semi-Remote Gait Assistance Interface A Joystick with Visual Feedback Capabilities for Therapists.PNGimage/png144714https://repositorio.escuelaing.edu.co/bitstream/001/3248/3/Portada%20Semi-Remote%20Gait%20Assistance%20Interface%20A%20Joystick%20with%20Visual%20Feedback%20Capabilities%20for%20Therapists.PNGb7da54e3913091e2f82343b49e57e042MD53open accessSemi-Remote Gait Assistance Interface A Joystick with Visual Feedback Capabilities for Therapists.pdf.jpgSemi-Remote Gait Assistance Interface A Joystick with Visual Feedback Capabilities for Therapists.pdf.jpgGenerated Thumbnailimage/jpeg16115https://repositorio.escuelaing.edu.co/bitstream/001/3248/5/Semi-Remote%20Gait%20Assistance%20Interface%20A%20Joystick%20with%20Visual%20Feedback%20Capabilities%20for%20Therapists.pdf.jpg2c9f3c415063c5c9cf449b266a026ffaMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3248/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALSemi-Remote Gait Assistance Interface A Joystick with Visual Feedback Capabilities for Therapists.pdfSemi-Remote Gait Assistance Interface A Joystick with Visual Feedback Capabilities for Therapists.pdfapplication/pdf5239218https://repositorio.escuelaing.edu.co/bitstream/001/3248/1/Semi-Remote%20Gait%20Assistance%20Interface%20A%20Joystick%20with%20Visual%20Feedback%20Capabilities%20for%20Therapists.pdf779f508cd4c09ef9d5611debd0ad63caMD51metadata only access001/3248oai:repositorio.escuelaing.edu.co:001/32482024-09-06 03:01:43.083metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK