Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices

Recent implementations of sensory systems have addressed gait characterization in several assistive, rehabilitation and human-robot interaction scenarios. Sensors such as laser rangefinders, force platforms and motion tracking systems have been widely used to achieve legs’ position tracking, as well...

Full description

Autores:
Aguirre, Andrés
Sierra M., Sergio D.
Múnera, Marcela
Cifuentes, Carlos A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3296
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3296
https://repositorio.escuelaing.edu.co/
Palabra clave:
Rehabilitación médica
Medical rehabilitation
Robótica médica
Robotics in medicine
Aparatos fisiológicos
Physiological apparatus
Marcha asistida por un andador
Interacción humano-robot
Telémetro láser
Sensores ambulatorios
Espacio-temporal Parámetros de la marcha
Walker-assisted gait
Human-robot interaction
Laser rangefinder
Ambulatory sensors
Spatio-temporal gait parameters
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_88eed19ed2843dca0f7940972b8a721b
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3296
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices
title Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices
spellingShingle Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices
Rehabilitación médica
Medical rehabilitation
Robótica médica
Robotics in medicine
Aparatos fisiológicos
Physiological apparatus
Marcha asistida por un andador
Interacción humano-robot
Telémetro láser
Sensores ambulatorios
Espacio-temporal Parámetros de la marcha
Walker-assisted gait
Human-robot interaction
Laser rangefinder
Ambulatory sensors
Spatio-temporal gait parameters
title_short Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices
title_full Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices
title_fullStr Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices
title_full_unstemmed Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices
title_sort Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices
dc.creator.fl_str_mv Aguirre, Andrés
Sierra M., Sergio D.
Múnera, Marcela
Cifuentes, Carlos A.
dc.contributor.author.none.fl_str_mv Aguirre, Andrés
Sierra M., Sergio D.
Múnera, Marcela
Cifuentes, Carlos A.
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Rehabilitación médica
Medical rehabilitation
Robótica médica
Robotics in medicine
Aparatos fisiológicos
Physiological apparatus
topic Rehabilitación médica
Medical rehabilitation
Robótica médica
Robotics in medicine
Aparatos fisiológicos
Physiological apparatus
Marcha asistida por un andador
Interacción humano-robot
Telémetro láser
Sensores ambulatorios
Espacio-temporal Parámetros de la marcha
Walker-assisted gait
Human-robot interaction
Laser rangefinder
Ambulatory sensors
Spatio-temporal gait parameters
dc.subject.proposal.spa.fl_str_mv Marcha asistida por un andador
Interacción humano-robot
Telémetro láser
Sensores ambulatorios
Espacio-temporal Parámetros de la marcha
dc.subject.proposal.eng.fl_str_mv Walker-assisted gait
Human-robot interaction
Laser rangefinder
Ambulatory sensors
Spatio-temporal gait parameters
description Recent implementations of sensory systems have addressed gait characterization in several assistive, rehabilitation and human-robot interaction scenarios. Sensors such as laser rangefinders, force platforms and motion tracking systems have been widely used to achieve legs’ position tracking, as well as to estimate gait spatio-temporal parameters. However, the validation of those measurements with a gold standard system is still lacking. In this sense, this work is aimed at proposing an online system for the estimation of gait parameters for walker-assisted gait with smart or robotic devices. Moreover, a validation study with an optoelectronic system was carried out. A group of 30 healthy volunteers was recruited. The trials were performed on a treadmill, where the subjects were asked to walk at 4 different speeds. The proposed system is equipped with a laser rangefinder to calculate the users’ legs position. Additionally, two adaptive filters, as well as a linear mathematical model were used to adjust the estimations of the users’ gait parameters. Results show that our proposed system is able to estimate the stride cadence and the step length with an error lower than 5% compared with the gold standard system.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2024-10-04T17:18:32Z
dc.date.available.none.fl_str_mv 2024-10-04T17:18:32Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1558-1748
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3296
dc.identifier.eissn.spa.fl_str_mv 1558-1748
dc.identifier.instname.spa.fl_str_mv Universidad Escuela Colombiana de Ingeniería Julio Garavito
dc.identifier.reponame.spa.fl_str_mv Repositorio Digital
dc.identifier.repourl.spa.fl_str_mv https://repositorio.escuelaing.edu.co/
identifier_str_mv 1558-1748
Universidad Escuela Colombiana de Ingeniería Julio Garavito
Repositorio Digital
url https://repositorio.escuelaing.edu.co/handle/001/3296
https://repositorio.escuelaing.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Vol. 21 No. 13, 2021
dc.relation.citationendpage.spa.fl_str_mv 14280
dc.relation.citationissue.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 14272
dc.relation.citationvolume.spa.fl_str_mv 21
dc.relation.ispartofjournal.eng.fl_str_mv IEEE SENSORS JOURNAL
dc.relation.references.spa.fl_str_mv J. Marín, T. Blanco, J. J. Marín, A. Moreno, E. Martitegui, and J. C. Arages, “Integrating a gait analysis test in hospital rehabilitation: A service design approach,” PLoS ONE, vol. 14, no. 10, Oct. 2019, Art. no. e0224409
M. W. Whittle, “Clinical gait analysis: A review,” Human Movement Sci., vol. 15, pp. 369–387, 1996.
H. Stolze et al., “Gait analysis during treadmill and overground locomotion in children and adults,” Electroencephalogr. Clin. Neurophysiol./Electromyography Motor Control, vol. 105, no. 6, pp. 490–497, Dec. 1997
C. A. Cifuentes and A. Frizera, Human-Robot Interact. Strategies for Walker-Assisted Locomotion, vol. 115. Cham, Switzerland: Springer, 2016, [Online]. Available: http://link.springer.com/10.1007/978-3-319- 34063-
J. Casas, N. Cespedes, M. Múnera, and C. A. Cifuentes, “Human-robot interaction for rehabilitation scenarios,” in Control Systems Design of Bio-Robotics and Bio-mechatronics with Advanced Applications. Amsterdam, The Netherlands: Elsevier, 2020, pp. 1–31. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/B9780128174630000010
S. D. S. Sierra M., M. Garzón, M. Mánera, and C. A. Cifuentes, “Human–robot–environment interaction interface for smart walker assisted gait: AGoRA walker,” Sensors, vol. 19, no. 13, p. 2897, Jun. 2019.
W. M. Scheidegger et al., “A novel multimodal cognitive interaction for walker-assisted rehabilitation therapies,” in Proc. IEEE 16th Int. Conf. Rehabil. Robot. (ICORR), Jun. 2019, pp. 905–910. [Online]. Available: https://ieeexplore.ieee.org/document/8779469/
J. Ballesteros, C. Urdiales, A. B. Martinez, and M. Tirado, “Online estimation of rollator user condition using spatiotemporal gait parameters,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 3180–3185.
C. A. Cifuentes, C. Rodriguez, A. Frizera, and T. Bastos, “Sensor fusion to control a robotic walker based on upper-limbs reaction forces and gait kinematics,” in Proc. 5th IEEE RAS/EMBS Int. Conf. Biomed. Robot. Biomechatron., Aug. 2014, pp. 1098–1103.
A. Muro-de-la-Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla, “Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications,” Sensors, vol. 14, no. 2, pp. 3362–3394, Feb. 2014.
A. Ferrari, P. Ginis, M. Hardegger, F. Casamassima, L. Rocchi, and L. Chiari, “A mobile Kalman-filter based solution for the real-time estimation of spatio-temporal_newline gait parameters,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 7, pp. 764–773, Jul. 2016.
J. Rueterbories, E. G. Spaich, B. Larsen, and O. K. Andersen, “Methods for gait event detection and analysis in ambulatory systems,” Med. Eng. Phys., vol. 32, no. 6, pp. 545–552, Jul. 2010, doi: 10.1016/j.medengphy.2010.03.007.
J. Taborri, E. Palermo, S. Rossi, and P. Cappa, “Gait partitioning methods: A systematic review,” Sensors, vol. 16, pp. 1–5, Dec. 2016.
Y. Qi, C. B. Soh, E. Gunawan, K.-S. Low, and R. Thomas, “Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 1, pp. 88–97, Jan. 2016.
R. Caldas, M. Mundt, W. Potthast, F. Buarque de Lima Neto, and B. Markert, “A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms,” Gait Posture, vol. 57, pp. 204–210, Sep. 2017.
M. D. S. Sánchez Manchola, M. J. P. Pinto Bernal, M. Munera, and C. A. Cifuentes, “Gait phase detection for lower-limb exoskeletons using foot motion data from a single inertial measurement unit in hemiparetic individuals,” Sensors, vol. 19, no. 13, p. 2988, Jul. 2019.
N.-H. Ho, P. Truong, and G.-M. Jeong, “Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone,” Sensors, vol. 16, no. 9, p. 1423, Sep. 2016
M. Brodie et al., “Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits are different,” Med. Biol. Eng, vol. 54, pp. 663–674, Dec. 2016
M. Iwai et al., “The validity of spatiotemporal gait analysis using dual laser range sensors: A cross-sectional study,” Arch. Physiotherapy, vol. 9, no. 1, Dec. 2019.
S. Fudickar, C. Stolle, N. Volkening, and A. Hein, “Scanning laser rangefinders for the unobtrusive monitoring of gait parameters in unsupervised settings,” Sensors, vol. 18, no. 10, p. 3424, Oct. 2018. [Online]. Available: http://www.mdpi.com/1424-8220/18/10/3424
Hokuyo Automatic CO. Scanning Rangefinder Distance Data URG04LX-UG01 Product Details. Accessed: Feb. 3, 2020. [Online]. Available: https://www.hokuyo-aut.jp/search/single.php?serial=166
B. Bioengineering. SMART-DX|Motion Capture System. Accessed: Feb. 3, 2020. [Online]. Available: http://www.btsbioengineering.com/ products/smart-dx/
R. B. Davis, S. Õunpuu, D. Tyburski, and J. R. Gage, “A gait analysis data collection and reduction technique,” Hum. Movement Sci., vol. 10, no. 5, pp. 575–587, Oct. 1991.
N. Sekiya, H. Nagasaki, and H. F. Ito Taketo, “The invariant relationship between step length and step rate during free walking,” J. Hum. Movement Stud., vol. 30, no. 6, pp. 241–257, 1996
W. T. Latt, U.-X. Tan, K. C. Veluvolu, C. Y. Shee, and W. T. Ang, “Real-time estimation and prediction of periodic signals from attenuated and phase-shifted sensed signals,” in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, Jul. 2009, pp. 1643–1648. [Online]. Available: http://ieeexplore.ieee.org/document/5229825/
V. Bonnet, C. Mazzá, J. McCamley, and A. Cappozzo, “Use of weighted Fourier linear combiner filters to estimate lower trunk 3D orientation from gyroscope sensors data,” J. NeuroEng. Rehabil., vol. 10, no. 1, p. 29, 2013. [Online]. Available: http://jneuroengrehab.biomedcentral. com/articles/10.1186/1743-0003-10-2%9
V. Bonnet, C. Mazzà, K. McCamley, and J. A. Cappozzo, “Use of weighted Fourier linear combiner filters to gyroscope sensors data,” J. Neuroeng. Rehabil., vol. 10, no. 1, p. 29, 2013.
J. Gallego, E. Rocon, J. O. Roa, J. Moreno, and J. L. Pons, “Realtime estimation of pathological tremor parameters from gyroscope data,” Sensors, vol. 10, no. 3, pp. 2129–2149, Mar. 2010
A. F. Neto, J. A. Gallego, E. Rocon, J. L. Pons, and R. Ceres, “Extraction of user ’s navigation commands from upper body force interaction in walker assisted gait,” Biomed. Eng. OnLine, vol. 8, pp. 1–16, Oct. 2010.
J. F. Item-Glatthorn, N. C. Casartelli, and N. A. Maffiuletti, “Reproducibility of gait parameters at different surface inclinations and speeds using an instrumented treadmill system,” Gait Posture, vol. 44, pp. 259–264, Feb. 2016.
T. Pallej, M. Teixidó, M. Tresanchez, and J. Palacín, “Measuring gait using a ground laser range sensor,” Sensors, vol. 9, no. 11, pp. 9133–9146, Nov. 2009. http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=3260635&to%ol=pmcentrez&rendertype= abstract
M. Teixidó, T. Pallejâ, M. Tresanchez, M. Nogués, and J. Palacín, “Measuring oscillating walking paths with a LIDAR,” Sensors, vol. 11, no. 5, pp. 5071–5086, May 2011.
F. Alton, L. Baldey, S. Caplan, and M. C. Morrissey, “A kinematic comparison of overground and treadmill walking,” Clin. Biomechanics, vol. 13, no. 6, pp. 434–440, Sep. 1998.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE Sensors Council
dc.publisher.place.spa.fl_str_mv s.l
dc.source.spa.fl_str_mv https://www.ieee.org/publications/rights/index.html
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3296/4/Online_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices%20%281%29.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3296/3/Portada%20Online_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices%20%281%29.PNG
https://repositorio.escuelaing.edu.co/bitstream/001/3296/5/Online_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices%20%281%29.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3296/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3296/1/Online_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices%20%281%29.pdf
bitstream.checksum.fl_str_mv 53e85aa0c0f28f6c13e04b7856d0c6b5
95a2483e2be64f15b38892a816098baa
a9d8a08b73ea633f3dcc5ca1646de0df
5a7ca94c2e5326ee169f979d71d0f06e
c8d1f4ff307cd38290689b0655d8038c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355628160712704
spelling Aguirre, Andrésb7c23972f4b7842df2d2f60ffa18a65eSierra M., Sergio D.737e72bd7de516ba4165724b71283ae0Múnera, Marcela8047a30ff2499f8ae5a4e903871b8f95Cifuentes, Carlos A.0b885a45437175ae12e5d0a6f598afc4GiBiome2024-10-04T17:18:32Z2024-10-04T17:18:32Z20211558-1748https://repositorio.escuelaing.edu.co/handle/001/32961558-1748Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/Recent implementations of sensory systems have addressed gait characterization in several assistive, rehabilitation and human-robot interaction scenarios. Sensors such as laser rangefinders, force platforms and motion tracking systems have been widely used to achieve legs’ position tracking, as well as to estimate gait spatio-temporal parameters. However, the validation of those measurements with a gold standard system is still lacking. In this sense, this work is aimed at proposing an online system for the estimation of gait parameters for walker-assisted gait with smart or robotic devices. Moreover, a validation study with an optoelectronic system was carried out. A group of 30 healthy volunteers was recruited. The trials were performed on a treadmill, where the subjects were asked to walk at 4 different speeds. The proposed system is equipped with a laser rangefinder to calculate the users’ legs position. Additionally, two adaptive filters, as well as a linear mathematical model were used to adjust the estimations of the users’ gait parameters. Results show that our proposed system is able to estimate the stride cadence and the step length with an error lower than 5% compared with the gold standard system.Implementaciones recientes de sistemas sensoriales. han abordado la caracterización de la marcha en varios servicios de asistencia, Escenarios de rehabilitación e interacción hombre-robot. Sensores como telémetros láser, plataformas de fuerza y ​​movimiento. Los sistemas de seguimiento se han utilizado ampliamente para lograr las piernas. seguimiento de la posición, así como para estimar la marcha espacio-temporal parámetros. Sin embargo, la validación de esas mediciones con un sistema de patrón oro todavía falta. En este sentido, Este trabajo tiene como objetivo proponer un sistema en línea para la estimación de los parámetros de la marcha para la marcha asistida por andador con Dispositivos inteligentes o robóticos. Además, un estudio de validación con un Se realizó un sistema optoelectrónico. Un grupo de 30 sanos Se reclutaron voluntarios. Los ensayos se realizaron en un cinta rodante, donde se pidió a los sujetos que caminaran a 4 velocidades diferentes. El sistema propuesto está equipado con un láser. Telémetro para calcular la posición de las piernas de los usuarios. Además, dos filtros adaptativos, así como un modelo matemático lineal. se utilizaron para ajustar las estimaciones de los parámetros de la marcha de los usuarios. Los resultados muestran que nuestro sistema propuesto es capaz de estimar la cadencia de zancada y la longitud del paso con un error inferior al 5% en comparación con el sistema estándar de oro.9 páginasapplication/pdfengIEEE Sensors Councils.lhttps://www.ieee.org/publications/rights/index.htmlOnline System for Gait Parameters Estimation Using a LRF Sensor for Assistive DevicesArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 21 No. 13, 202114280131427221IEEE SENSORS JOURNALJ. Marín, T. Blanco, J. J. Marín, A. Moreno, E. Martitegui, and J. C. Arages, “Integrating a gait analysis test in hospital rehabilitation: A service design approach,” PLoS ONE, vol. 14, no. 10, Oct. 2019, Art. no. e0224409M. W. Whittle, “Clinical gait analysis: A review,” Human Movement Sci., vol. 15, pp. 369–387, 1996.H. Stolze et al., “Gait analysis during treadmill and overground locomotion in children and adults,” Electroencephalogr. Clin. Neurophysiol./Electromyography Motor Control, vol. 105, no. 6, pp. 490–497, Dec. 1997C. A. Cifuentes and A. Frizera, Human-Robot Interact. Strategies for Walker-Assisted Locomotion, vol. 115. Cham, Switzerland: Springer, 2016, [Online]. Available: http://link.springer.com/10.1007/978-3-319- 34063-J. Casas, N. Cespedes, M. Múnera, and C. A. Cifuentes, “Human-robot interaction for rehabilitation scenarios,” in Control Systems Design of Bio-Robotics and Bio-mechatronics with Advanced Applications. Amsterdam, The Netherlands: Elsevier, 2020, pp. 1–31. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/B9780128174630000010S. D. S. Sierra M., M. Garzón, M. Mánera, and C. A. Cifuentes, “Human–robot–environment interaction interface for smart walker assisted gait: AGoRA walker,” Sensors, vol. 19, no. 13, p. 2897, Jun. 2019.W. M. Scheidegger et al., “A novel multimodal cognitive interaction for walker-assisted rehabilitation therapies,” in Proc. IEEE 16th Int. Conf. Rehabil. Robot. (ICORR), Jun. 2019, pp. 905–910. [Online]. Available: https://ieeexplore.ieee.org/document/8779469/J. Ballesteros, C. Urdiales, A. B. Martinez, and M. Tirado, “Online estimation of rollator user condition using spatiotemporal gait parameters,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 3180–3185.C. A. Cifuentes, C. Rodriguez, A. Frizera, and T. Bastos, “Sensor fusion to control a robotic walker based on upper-limbs reaction forces and gait kinematics,” in Proc. 5th IEEE RAS/EMBS Int. Conf. Biomed. Robot. Biomechatron., Aug. 2014, pp. 1098–1103.A. Muro-de-la-Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla, “Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications,” Sensors, vol. 14, no. 2, pp. 3362–3394, Feb. 2014.A. Ferrari, P. Ginis, M. Hardegger, F. Casamassima, L. Rocchi, and L. Chiari, “A mobile Kalman-filter based solution for the real-time estimation of spatio-temporal_newline gait parameters,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 7, pp. 764–773, Jul. 2016.J. Rueterbories, E. G. Spaich, B. Larsen, and O. K. Andersen, “Methods for gait event detection and analysis in ambulatory systems,” Med. Eng. Phys., vol. 32, no. 6, pp. 545–552, Jul. 2010, doi: 10.1016/j.medengphy.2010.03.007.J. Taborri, E. Palermo, S. Rossi, and P. Cappa, “Gait partitioning methods: A systematic review,” Sensors, vol. 16, pp. 1–5, Dec. 2016.Y. Qi, C. B. Soh, E. Gunawan, K.-S. Low, and R. Thomas, “Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 1, pp. 88–97, Jan. 2016.R. Caldas, M. Mundt, W. Potthast, F. Buarque de Lima Neto, and B. Markert, “A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms,” Gait Posture, vol. 57, pp. 204–210, Sep. 2017.M. D. S. Sánchez Manchola, M. J. P. Pinto Bernal, M. Munera, and C. A. Cifuentes, “Gait phase detection for lower-limb exoskeletons using foot motion data from a single inertial measurement unit in hemiparetic individuals,” Sensors, vol. 19, no. 13, p. 2988, Jul. 2019.N.-H. Ho, P. Truong, and G.-M. Jeong, “Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone,” Sensors, vol. 16, no. 9, p. 1423, Sep. 2016M. Brodie et al., “Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits are different,” Med. Biol. Eng, vol. 54, pp. 663–674, Dec. 2016M. Iwai et al., “The validity of spatiotemporal gait analysis using dual laser range sensors: A cross-sectional study,” Arch. Physiotherapy, vol. 9, no. 1, Dec. 2019.S. Fudickar, C. Stolle, N. Volkening, and A. Hein, “Scanning laser rangefinders for the unobtrusive monitoring of gait parameters in unsupervised settings,” Sensors, vol. 18, no. 10, p. 3424, Oct. 2018. [Online]. Available: http://www.mdpi.com/1424-8220/18/10/3424Hokuyo Automatic CO. Scanning Rangefinder Distance Data URG04LX-UG01 Product Details. Accessed: Feb. 3, 2020. [Online]. Available: https://www.hokuyo-aut.jp/search/single.php?serial=166B. Bioengineering. SMART-DX|Motion Capture System. Accessed: Feb. 3, 2020. [Online]. Available: http://www.btsbioengineering.com/ products/smart-dx/R. B. Davis, S. Õunpuu, D. Tyburski, and J. R. Gage, “A gait analysis data collection and reduction technique,” Hum. Movement Sci., vol. 10, no. 5, pp. 575–587, Oct. 1991.N. Sekiya, H. Nagasaki, and H. F. Ito Taketo, “The invariant relationship between step length and step rate during free walking,” J. Hum. Movement Stud., vol. 30, no. 6, pp. 241–257, 1996W. T. Latt, U.-X. Tan, K. C. Veluvolu, C. Y. Shee, and W. T. Ang, “Real-time estimation and prediction of periodic signals from attenuated and phase-shifted sensed signals,” in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, Jul. 2009, pp. 1643–1648. [Online]. Available: http://ieeexplore.ieee.org/document/5229825/V. Bonnet, C. Mazzá, J. McCamley, and A. Cappozzo, “Use of weighted Fourier linear combiner filters to estimate lower trunk 3D orientation from gyroscope sensors data,” J. NeuroEng. Rehabil., vol. 10, no. 1, p. 29, 2013. [Online]. Available: http://jneuroengrehab.biomedcentral. com/articles/10.1186/1743-0003-10-2%9V. Bonnet, C. Mazzà, K. McCamley, and J. A. Cappozzo, “Use of weighted Fourier linear combiner filters to gyroscope sensors data,” J. Neuroeng. Rehabil., vol. 10, no. 1, p. 29, 2013.J. Gallego, E. Rocon, J. O. Roa, J. Moreno, and J. L. Pons, “Realtime estimation of pathological tremor parameters from gyroscope data,” Sensors, vol. 10, no. 3, pp. 2129–2149, Mar. 2010A. F. Neto, J. A. Gallego, E. Rocon, J. L. Pons, and R. Ceres, “Extraction of user ’s navigation commands from upper body force interaction in walker assisted gait,” Biomed. Eng. OnLine, vol. 8, pp. 1–16, Oct. 2010.J. F. Item-Glatthorn, N. C. Casartelli, and N. A. Maffiuletti, “Reproducibility of gait parameters at different surface inclinations and speeds using an instrumented treadmill system,” Gait Posture, vol. 44, pp. 259–264, Feb. 2016.T. Pallej, M. Teixidó, M. Tresanchez, and J. Palacín, “Measuring gait using a ground laser range sensor,” Sensors, vol. 9, no. 11, pp. 9133–9146, Nov. 2009. http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=3260635&to%ol=pmcentrez&rendertype= abstractM. Teixidó, T. Pallejâ, M. Tresanchez, M. Nogués, and J. Palacín, “Measuring oscillating walking paths with a LIDAR,” Sensors, vol. 11, no. 5, pp. 5071–5086, May 2011.F. Alton, L. Baldey, S. Caplan, and M. C. Morrissey, “A kinematic comparison of overground and treadmill walking,” Clin. Biomechanics, vol. 13, no. 6, pp. 434–440, Sep. 1998.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbRehabilitación médicaMedical rehabilitationRobótica médicaRobotics in medicineAparatos fisiológicosPhysiological apparatusMarcha asistida por un andadorInteracción humano-robotTelémetro láserSensores ambulatoriosEspacio-temporal Parámetros de la marchaWalker-assisted gaitHuman-robot interactionLaser rangefinderAmbulatory sensorsSpatio-temporal gait parametersTEXTOnline_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices (1).pdf.txtOnline_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices (1).pdf.txtExtracted texttext/plain48491https://repositorio.escuelaing.edu.co/bitstream/001/3296/4/Online_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices%20%281%29.pdf.txt53e85aa0c0f28f6c13e04b7856d0c6b5MD54metadata only accessTHUMBNAILPortada Online_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices (1).PNGPortada Online_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices (1).PNGimage/png195367https://repositorio.escuelaing.edu.co/bitstream/001/3296/3/Portada%20Online_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices%20%281%29.PNG95a2483e2be64f15b38892a816098baaMD53open accessOnline_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices (1).pdf.jpgOnline_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices (1).pdf.jpgGenerated Thumbnailimage/jpeg20210https://repositorio.escuelaing.edu.co/bitstream/001/3296/5/Online_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices%20%281%29.pdf.jpga9d8a08b73ea633f3dcc5ca1646de0dfMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3296/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALOnline_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices (1).pdfOnline_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices (1).pdfapplication/pdf2271231https://repositorio.escuelaing.edu.co/bitstream/001/3296/1/Online_System_for_Gait_Parameters_Estimation_Using_a_LRF_Sensor_for_Assistive_Devices%20%281%29.pdfc8d1f4ff307cd38290689b0655d8038cMD51metadata only access001/3296oai:repositorio.escuelaing.edu.co:001/32962024-10-05 03:01:29.888metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK