Machine Learning Prediction of Flexural Behavior of UHPFRC

To evaluate the possibility of predicting the flexural behaviour of UHPFRC, four analytical models were developed, based on artificial neural networks (ANN), to predict the first cracking tension or Limit of Proportionality (LOP), its corresponding deflection (δLOP), ultimate strength or Modulus of...

Full description

Autores:
Abellán García, Joaquín
Fernández Gómez, Jaime A.
Torres Castellanos, Nancy
Núñez López, Andrés M.
Tipo de recurso:
Part of book
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1811
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1811
Palabra clave:
Aprendizaje automático (Inteligencia artificial)
Hormigón armado
Análisis estructural (Ingeniería)
Flexibilidad
Resistencia de materiales
Machine learning
Reinforced concrete
Structural analysis (Engineering)
Flexure
Strength of materials
UHPFRC
LOP
MOR
Machine learning
PCA
Rights
closedAccess
License
© RILEM 2021