Axiomatic Set Theory à la Dijkstra and Scholten
The algebraic approach by E.W. Dijkstra and C.S. Scholten to formal logic is a proof calculus, where the notion of proof is a sequence of equivalences proved – mainly – by using substitution of ‘equals for equals’. This paper presents Set , a first-order logic axiomatization for set theory using the...
- Autores:
-
Acosta, Ernesto
Aldana, Bernarda
Bohórquez, Jaime
Rocha, Camilo
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2017
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1480
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1480
https://link.springer.com/chapter/10.1007%2F978-3-319-66562-7_55
- Palabra clave:
- Teoría axiomática de conjuntos
Lógica de Dijkstra-Scholten
Manipulación simbólica
SET
Axiomatic set theory
Dijkstra-Scholten logic
Derivation
Formal system
Zermelo-Fraenkel (ZF)
Symbolic manipulation
Undergraduate-level course
- Rights
- closedAccess
- License
- https://creativecommons.org/licenses/by/4.0/
id |
ESCUELAIG2_6d0e05daff23457c18f7b38df43cd8b0 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1480 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Axiomatic Set Theory à la Dijkstra and Scholten |
title |
Axiomatic Set Theory à la Dijkstra and Scholten |
spellingShingle |
Axiomatic Set Theory à la Dijkstra and Scholten Teoría axiomática de conjuntos Lógica de Dijkstra-Scholten Manipulación simbólica SET Axiomatic set theory Dijkstra-Scholten logic Derivation Formal system Zermelo-Fraenkel (ZF) Symbolic manipulation Undergraduate-level course |
title_short |
Axiomatic Set Theory à la Dijkstra and Scholten |
title_full |
Axiomatic Set Theory à la Dijkstra and Scholten |
title_fullStr |
Axiomatic Set Theory à la Dijkstra and Scholten |
title_full_unstemmed |
Axiomatic Set Theory à la Dijkstra and Scholten |
title_sort |
Axiomatic Set Theory à la Dijkstra and Scholten |
dc.creator.fl_str_mv |
Acosta, Ernesto Aldana, Bernarda Bohórquez, Jaime Rocha, Camilo |
dc.contributor.author.none.fl_str_mv |
Acosta, Ernesto Aldana, Bernarda Bohórquez, Jaime Rocha, Camilo |
dc.contributor.researchgroup.spa.fl_str_mv |
CTG-Informática |
dc.subject.armarc.SPA.fl_str_mv |
Teoría axiomática de conjuntos Lógica de Dijkstra-Scholten Manipulación simbólica |
topic |
Teoría axiomática de conjuntos Lógica de Dijkstra-Scholten Manipulación simbólica SET Axiomatic set theory Dijkstra-Scholten logic Derivation Formal system Zermelo-Fraenkel (ZF) Symbolic manipulation Undergraduate-level course |
dc.subject.armarc.ENG.fl_str_mv |
SET |
dc.subject.proposal.spa.fl_str_mv |
Axiomatic set theory Dijkstra-Scholten logic Derivation Formal system Zermelo-Fraenkel (ZF) Symbolic manipulation Undergraduate-level course |
description |
The algebraic approach by E.W. Dijkstra and C.S. Scholten to formal logic is a proof calculus, where the notion of proof is a sequence of equivalences proved – mainly – by using substitution of ‘equals for equals’. This paper presents Set , a first-order logic axiomatization for set theory using the approach of Dijkstra and Scholten. What is novel about the approach presented in this paper is that symbolic manipulation of formulas is an effective tool for teaching an axiomatic set theory course to sophomore-year undergraduate students in mathematics. This paper contains many examples on how argumentative proofs can be easily expressed in Set and points out how the rigorous approach of Set can enrich the learning experience of students. The results presented in this paper are part of a larger effort to formally study and mechanize topics in mathematics and computer science with the algebraic approach of Dijkstra and Scholten. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2021-05-24T23:13:38Z 2021-10-01T17:22:44Z |
dc.date.available.none.fl_str_mv |
2021-05-24T23:13:38Z 2021-10-01T17:22:44Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/CAP_LIB |
format |
http://purl.org/coar/resource_type/c_3248 |
status_str |
publishedVersion |
dc.identifier.isbn.none.fl_str_mv |
978-3-319-66561-0 978-3-319-66562-7 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1480 |
dc.identifier.doi.none.fl_str_mv |
doi.org/10.1007/978-3-319-66562-7_55 |
dc.identifier.url.none.fl_str_mv |
https://link.springer.com/chapter/10.1007%2F978-3-319-66562-7_55 |
identifier_str_mv |
978-3-319-66561-0 978-3-319-66562-7 doi.org/10.1007/978-3-319-66562-7_55 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1480 https://link.springer.com/chapter/10.1007%2F978-3-319-66562-7_55 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.none.fl_str_mv |
Communications in Computer and Information Science book series (CCIS, volume 735); |
dc.relation.citationedition.spa.fl_str_mv |
CCC 2017 |
dc.relation.citationendpage.spa.fl_str_mv |
791 |
dc.relation.citationstartpage.spa.fl_str_mv |
775 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofbook.spa.fl_str_mv |
Advances in Computing |
dc.relation.references.spa.fl_str_mv |
Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Texts and Monographs in Computer Science. Springer, New York (1990) Halmos, P.R.: Naive Set Theory. Undergraduate Texts in Mathematics. Springer, New York (1974) Hodel, R.E.: An Introduction to Mathematical Logic. Dover Publications Inc., New York (2013) Hrbacek, K., Jech, T.J.: Introduction to Set Theory. Monographs and Textbooks in Pure and Applied Mathematics, vol. 220, 3rd edn. M. Dekker, New York (1999). Rev. and expanded edition Hsiang, J.: Refutational theorem proving using term-rewriting systems. Artif. Intell. 25(3), 255–300 (1985) Jech, T.J.: Set Theory. Pure and Applied Mathematics, a Series of Monographs and Textbooks, vol. 79. Academic Press, New York (1978) Kunen, K.: Set Theory. Studies in Logic, vol. 34. College Publications, London (2013). Revised edition Meseguer, J.: General logics. In: Logic Colloquium 1987: Proceedings. Studies in Logic and the Foundations of Mathematics, 1st edn., vol. 129, pp. 275–330. Elsevier, Granada, August 1989 Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992) Rocha, C.: The formal system of Dijkstra and Scholten. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 580–597. Springer, Cham (2015). doi: 10.1007/978-3-319-23165-5_27 Rocha, C., Meseguer, J.: A rewriting decision procedure for Dijkstra-Scholten’s syllogistic logic with complements. Revista Colombiana de Computación 8(2), 101–130 (2007) Rocha, C., Meseguer, J.: Theorem proving modulo based on boolean equational procedures. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2008. LNCS, vol. 4988, pp. 337–351. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78913-0_25 Tourlakis, G.J.: Lectures in Logic and Set Theory. Cambridge Studies in Advanced Mathematics, vol. 82–83. Cambridge University Press, Cambridge (2003) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Nature |
dc.publisher.place.spa.fl_str_mv |
Suiza |
dc.source.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007%2F978-3-319-66562-7_55 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1480/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1480/2/Axiomatic%20Set%20Theory%20%c3%a0%20la%20Dijkstra%20and%20Scholten.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1480/3/Axiomatic%20Set%20Theory%20%c3%a0%20la%20Dijkstra%20and%20Scholten.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/1480/4/Axiomatic%20Set%20Theory%20%c3%a0%20la%20Dijkstra%20and%20Scholten.pdf.jpg |
bitstream.checksum.fl_str_mv |
5a7ca94c2e5326ee169f979d71d0f06e 8aeed3b8575822b210cfe6a39958eda3 ce17bbb4d4f1cbe9a2413e4ea88bb0b2 5e6449ca81e5fd3e68a22c7345d52a6a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355605702311936 |
spelling |
Acosta, Ernesto6db75777036e0bd7240d41677171e5e6600Aldana, Bernardadd9576ac3ffc19dd2889b032a359ad63600Bohórquez, Jaime34ca64f10c7c3bbadec92bdb453a4170600Rocha, Camilo649eba80a4c919beefa7d19955bc2950600CTG-Informática2021-05-24T23:13:38Z2021-10-01T17:22:44Z2021-05-24T23:13:38Z2021-10-01T17:22:44Z2017978-3-319-66561-0978-3-319-66562-7https://repositorio.escuelaing.edu.co/handle/001/1480doi.org/10.1007/978-3-319-66562-7_55https://link.springer.com/chapter/10.1007%2F978-3-319-66562-7_55The algebraic approach by E.W. Dijkstra and C.S. Scholten to formal logic is a proof calculus, where the notion of proof is a sequence of equivalences proved – mainly – by using substitution of ‘equals for equals’. This paper presents Set , a first-order logic axiomatization for set theory using the approach of Dijkstra and Scholten. What is novel about the approach presented in this paper is that symbolic manipulation of formulas is an effective tool for teaching an axiomatic set theory course to sophomore-year undergraduate students in mathematics. This paper contains many examples on how argumentative proofs can be easily expressed in Set and points out how the rigorous approach of Set can enrich the learning experience of students. The results presented in this paper are part of a larger effort to formally study and mechanize topics in mathematics and computer science with the algebraic approach of Dijkstra and Scholten.El enfoque algebraico de E.W. Dijkstra y C.S. Scholten a la lógica formal es un cálculo de prueba, donde la noción de prueba es una secuencia de equivalencias probadas, principalmente, mediante la sustitución de "iguales por iguales". Este artículo presenta Set, una axiomatización lógica de primer orden para la teoría de conjuntos utilizando el enfoque de Dijkstra y Scholten. Lo novedoso del enfoque presentado en este artículo es que la manipulación simbólica de fórmulas es una herramienta eficaz para enseñar un curso de teoría axiomática de conjuntos a estudiantes de segundo año de pregrado en matemáticas. Este artículo contiene muchos ejemplos sobre cómo las pruebas argumentativas se pueden expresar fácilmente en Set y señala cómo el enfoque riguroso de Set puede enriquecer la experiencia de aprendizaje de los estudiantes. Los resultados presentados en este artículo son parte de un esfuerzo mayor para estudiar y mecanizar formalmente temas en matemáticas e informática con el enfoque algebraico de Dijkstra y Scholten.Colombian Conference on Computing12 páginasapplication/pdfengSpringer NatureSuizaCommunications in Computer and Information Science book series (CCIS, volume 735);CCC 2017791775N/AAdvances in ComputingDijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Texts and Monographs in Computer Science. Springer, New York (1990)Halmos, P.R.: Naive Set Theory. Undergraduate Texts in Mathematics. Springer, New York (1974)Hodel, R.E.: An Introduction to Mathematical Logic. Dover Publications Inc., New York (2013)Hrbacek, K., Jech, T.J.: Introduction to Set Theory. Monographs and Textbooks in Pure and Applied Mathematics, vol. 220, 3rd edn. M. Dekker, New York (1999). Rev. and expanded editionHsiang, J.: Refutational theorem proving using term-rewriting systems. Artif. Intell. 25(3), 255–300 (1985)Jech, T.J.: Set Theory. Pure and Applied Mathematics, a Series of Monographs and Textbooks, vol. 79. Academic Press, New York (1978)Kunen, K.: Set Theory. Studies in Logic, vol. 34. College Publications, London (2013). Revised editionMeseguer, J.: General logics. In: Logic Colloquium 1987: Proceedings. Studies in Logic and the Foundations of Mathematics, 1st edn., vol. 129, pp. 275–330. Elsevier, Granada, August 1989Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)Rocha, C.: The formal system of Dijkstra and Scholten. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 580–597. Springer, Cham (2015). doi: 10.1007/978-3-319-23165-5_27Rocha, C., Meseguer, J.: A rewriting decision procedure for Dijkstra-Scholten’s syllogistic logic with complements. Revista Colombiana de Computación 8(2), 101–130 (2007)Rocha, C., Meseguer, J.: Theorem proving modulo based on boolean equational procedures. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2008. LNCS, vol. 4988, pp. 337–351. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78913-0_25Tourlakis, G.J.: Lectures in Logic and Set Theory. Cambridge Studies in Advanced Mathematics, vol. 82–83. Cambridge University Press, Cambridge (2003)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/closedAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_14cbhttps://link.springer.com/chapter/10.1007%2F978-3-319-66562-7_55Axiomatic Set Theory à la Dijkstra and ScholtenArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85Teoría axiomática de conjuntosLógica de Dijkstra-ScholtenManipulación simbólicaSETAxiomatic set theoryDijkstra-Scholten logicDerivationFormal systemZermelo-Fraenkel (ZF)Symbolic manipulationUndergraduate-level courseLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1480/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALAxiomatic Set Theory à la Dijkstra and Scholten.pdfapplication/pdf104087https://repositorio.escuelaing.edu.co/bitstream/001/1480/2/Axiomatic%20Set%20Theory%20%c3%a0%20la%20Dijkstra%20and%20Scholten.pdf8aeed3b8575822b210cfe6a39958eda3MD52metadata only accessTEXTAxiomatic Set Theory à la Dijkstra and Scholten.pdf.txtAxiomatic Set Theory à la Dijkstra and Scholten.pdf.txtExtracted texttext/plain4https://repositorio.escuelaing.edu.co/bitstream/001/1480/3/Axiomatic%20Set%20Theory%20%c3%a0%20la%20Dijkstra%20and%20Scholten.pdf.txtce17bbb4d4f1cbe9a2413e4ea88bb0b2MD53open accessTHUMBNAILAxiomatic Set Theory à la Dijkstra and Scholten.pdf.jpgAxiomatic Set Theory à la Dijkstra and Scholten.pdf.jpgGenerated Thumbnailimage/jpeg7812https://repositorio.escuelaing.edu.co/bitstream/001/1480/4/Axiomatic%20Set%20Theory%20%c3%a0%20la%20Dijkstra%20and%20Scholten.pdf.jpg5e6449ca81e5fd3e68a22c7345d52a6aMD54open access001/1480oai:repositorio.escuelaing.edu.co:001/14802022-10-24 18:09:04.619metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |