Axiomatic Set Theory à la Dijkstra and Scholten

The algebraic approach by E.W. Dijkstra and C.S. Scholten to formal logic is a proof calculus, where the notion of proof is a sequence of equivalences proved – mainly – by using substitution of ‘equals for equals’. This paper presents Set , a first-order logic axiomatization for set theory using the...

Full description

Autores:
Acosta, Ernesto
Aldana, Bernarda
Bohórquez, Jaime
Rocha, Camilo
Tipo de recurso:
Part of book
Fecha de publicación:
2017
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1480
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1480
https://link.springer.com/chapter/10.1007%2F978-3-319-66562-7_55
Palabra clave:
Teoría axiomática de conjuntos
Lógica de Dijkstra-Scholten
Manipulación simbólica
SET
Axiomatic set theory
Dijkstra-Scholten logic
Derivation
Formal system
Zermelo-Fraenkel (ZF)
Symbolic manipulation
Undergraduate-level course
Rights
closedAccess
License
https://creativecommons.org/licenses/by/4.0/