Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness
Smart walkers are commonly used as potential gait assistance devices, to provide physical and cognitive assistance within rehabilitation and clinical scenarios. To understand such rehabilitation processes, several biomechanical studies have been conducted to assess human gait with passive and active...
- Autores:
-
Sierra M, Sergio D.
Múnera, Marcela
Provot, Thomas
Bourgain, Maxime
Cifuentes, Carlos A.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/3249
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/3249
https://repositorio.escuelaing.edu.co/
- Palabra clave:
- Biomecánica
Biomechanics
Aparatos fisiológicos
Physiological apparatus
Tecnología de rehabilitación
Rehabilitation technology
Interacción física
Andador inteligente
Rigidez virtual
Interfaz háptica
Análisis de la marcha
Robótica asistida
Physical interaction
Smart walker
Virtual stiffness
Haptic interface
Gait analysis
Assistive robotics
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
ESCUELAIG2_44f47dd6b061c618b026379e4f0d1b44 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/3249 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness |
title |
Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness |
spellingShingle |
Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness Biomecánica Biomechanics Aparatos fisiológicos Physiological apparatus Tecnología de rehabilitación Rehabilitation technology Interacción física Andador inteligente Rigidez virtual Interfaz háptica Análisis de la marcha Robótica asistida Physical interaction Smart walker Virtual stiffness Haptic interface Gait analysis Assistive robotics |
title_short |
Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness |
title_full |
Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness |
title_fullStr |
Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness |
title_full_unstemmed |
Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness |
title_sort |
Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness |
dc.creator.fl_str_mv |
Sierra M, Sergio D. Múnera, Marcela Provot, Thomas Bourgain, Maxime Cifuentes, Carlos A. |
dc.contributor.author.none.fl_str_mv |
Sierra M, Sergio D. Múnera, Marcela Provot, Thomas Bourgain, Maxime Cifuentes, Carlos A. |
dc.contributor.researchgroup.spa.fl_str_mv |
GiBiome |
dc.subject.armarc.none.fl_str_mv |
Biomecánica Biomechanics Aparatos fisiológicos Physiological apparatus Tecnología de rehabilitación Rehabilitation technology |
topic |
Biomecánica Biomechanics Aparatos fisiológicos Physiological apparatus Tecnología de rehabilitación Rehabilitation technology Interacción física Andador inteligente Rigidez virtual Interfaz háptica Análisis de la marcha Robótica asistida Physical interaction Smart walker Virtual stiffness Haptic interface Gait analysis Assistive robotics |
dc.subject.proposal.spa.fl_str_mv |
Interacción física Andador inteligente Rigidez virtual Interfaz háptica Análisis de la marcha Robótica asistida |
dc.subject.proposal.eng.fl_str_mv |
Physical interaction Smart walker Virtual stiffness Haptic interface Gait analysis Assistive robotics |
description |
Smart walkers are commonly used as potential gait assistance devices, to provide physical and cognitive assistance within rehabilitation and clinical scenarios. To understand such rehabilitation processes, several biomechanical studies have been conducted to assess human gait with passive and active walkers. Several sessions were conducted with 11 healthy volunteers to assess three interaction strategies based on passive, low and high mechanical stiffness values on the AGoRA Smart Walker. The trials were carried out in a motion analysis laboratory. Kinematic data were also collected from the smart walker sensory interface. The interaction force between users and the device was recorded. The force required under passive and low stiffness modes was 56.66% and 67.48% smaller than the high stiffness mode, respectively. An increase of 17.03% for the hip range of motion, as well as the highest trunk’s inclination, were obtained under the resistive mode, suggesting a compensating motion to exert a higher impulse force on the device. Kinematic and physical interaction data suggested that the high stiffness mode significantly affected the users’ gait pattern. Results suggested that users compensated their kinematics, tilting their trunk and lower limbs to exert higher impulse forces on the device. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-09-05T21:50:29Z |
dc.date.available.none.fl_str_mv |
2024-09-05T21:50:29Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/3249 |
dc.identifier.eissn.spa.fl_str_mv |
1424-8220 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Escuela Colombiana de Ingeniería Julio Garavito |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.escuelaing.edu.co/ |
url |
https://repositorio.escuelaing.edu.co/handle/001/3249 https://repositorio.escuelaing.edu.co/ |
identifier_str_mv |
1424-8220 Universidad Escuela Colombiana de Ingeniería Julio Garavito Repositorio Digital |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Vol. 21 No. 3242, 2021 |
dc.relation.citationendpage.spa.fl_str_mv |
19 |
dc.relation.citationissue.spa.fl_str_mv |
3242 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
21 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Sensors |
dc.relation.references.spa.fl_str_mv |
Decker, L.M.; Cignetti, F.; Stergiou, N. Complexity and Human Gait. Rev. Andal. Med. Deport. 2010, 3, 2–12 Vaughan, C.L. Theories of bipedal walking: An odyssey. J. Biomech. 2003, 36, 513–523. [CrossRef] Buchman, A.S.; Boyle, P.A.; Leurgans, S.E.; Barnes, L.L.; Bennett, D.A. Cognitive Function is Associated with the Development of Mobility Impairments in Community-Dwelling Elders. Am. J. Geriatr Psychiatry 2011, 19, 571–580. [CrossRef] [PubMed] World Bank Group. Disability Inclusion. 2019. Available online: https://www.worldbank.org/en/topic/disability (accessed on 17 February 2021) Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly. Wien. Klin. Wochenschr. 2017, 129, 81–95. [CrossRef] Cifuentes, C.A.; Frizera, A. Human-Robot Interaction Strategies for Walker-Assisted Locomotion. In Springer Tracts in Advanced Robotics; Springer International Publishing: Cham, Switzerland; Berlin, Germany, 2016; Volume 115, p. 105. [CrossRef] Khan, R.M. Mobility impairment in the elderly. InnovAiT Educ. Inspir. Gen. Pract. 2018, 11, 14–19. [CrossRef] Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1–19. [CrossRef] Carrera, I.; Moreno, H.A.; Sierra M, S.D.; Campos, A.; Múnera, M.; Cifuentes, C.A. Technologies for Therapy and Assistance of Lower Limb Disabilities: Sit to Stand and Walking. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; Chapter 4, pp. 43–66. [CrossRef] Martins, M.M.; Santos, C.P.; Frizera-Neto, A.; Ceres, R. Assistive mobility devices focusing on Smart Walkers: Classification and review. Rob. Autom. Syst. 2012, 60, 548–562. [CrossRef] Russell Esposito, E.; Schmidtbauer, K.A.; Wilken, J.M. Experimental comparisons of passive and powered ankle-foot orthoses in individuals with limb reconstruction. J. Neuroeng. Rehabil. 2018, 15, 111. [CrossRef] Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018, 13, 819–834. [CrossRef] [PubMed] Sierra, M.S.D.; Arciniegas, L.; Ballen-Moreno, F.; Gómez-Vargas, D.; Múnera, M.; Cifuentes, C.A. Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; pp. 67–93. [CrossRef] Mundt, M.; Batista, J.P.; Markert, B.; Bollheimer, C.; Laurentius, T. Walking with rollator: A systematic review of gait parameters in older persons. Eur. Rev. Aging Phys. Act. 2019, 16, 15. [CrossRef] Van der Loos, H.M.; Reinkensmeyer, D.J.; Guglielmelli, E. Rehabilitation and Health Care Robotics. In Springer Handbook of Robotics; Springer International Publishing: Cham, Switzerland; New York City, NY, USA, 2016; Chapter 64, pp. 1685–1728. [CrossRef] Cardona, M.; Solanki, V.K.; García Cena, C.E. Exoskeleton Robots for Rehabilitation and Healthcare Devices; SpringerBriefs in Applied Sciences and Technology; Springer: Singapore, 2020. [CrossRef] Belda-Lois, J.M.; Horno, S.M.D.; Bermejo-Bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos, A.; et al. Rehabilitation of gait after stroke: A review towards a top-down approach. J. Neuroeng. Rehabilitat. 2011, 8, 66. [CrossRef] Sheffler, L.R.; Chae, J. Technological Advances in Interventions to Enhance Poststroke Gait. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 305–323. [CrossRef] [PubMed] Sierra M, S.D.; Garzón, M.; Múnera, M.; Cifuentes, C.A. Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker. Sensors 2019, 19, 2897. [CrossRef] [PubMed] Martins, M.; Santos, C.; Frizera, A.; Ceres, R. A review of the functionalities of smart walkers. Med. Eng. Phys. 2015, 37, 917–928. [CrossRef] [PubMed] Scheidegger, W.M.; de Mello, R.C.; Sierra M, S.D.; Jimenez, M.F.; Munera, M.C.; Cifuentes, C.A.; Frizera-Neto, A. A Novel Multimodal Cognitive Interaction for Walker-Assisted Rehabilitation Therapies. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 905–910. [CrossRef] Page, S.; Saint-Bauzel, L.; Rumeau, P.; Pasqui, V. Smart walkers: An application-oriented review. Robotica 2017, 35, 1243–1262. [CrossRef] Baker, R. Gait analysis methods in rehabilitation. J. Neuroeng. Rehabil. 2006, 3, 1–10. [CrossRef] Nirenberg, M.; Vernon, W.; Birch, I. A review of the historical use and criticisms of gait analysis evidence. Sci. Justice 2018, 58, 292–298. [CrossRef] Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sports Med. Open 2018, 4, 24. [CrossRef] Shahabpoor, E.; Pavic, A. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies. Sensors 2017, 17, 2085. [CrossRef] Sprager, S.; Juric, M. Inertial Sensor-Based Gait Recognition: A Review. Sensors 2015, 15, 22089–22127. [CrossRef] Alkjær, T.; Larsen, P.K.; Pedersen, G.; Nielsen, L.H.; Simonsen, E.B. Biomechanical analysis of rollator walking. Biomed. Eng. Online 2006, 5, 1–7. [CrossRef] Wang, T.; Dune, C.; Merlet, J.P.; Gorce, P.; Sacco, G.; Robert, P.; Turpin, J.M.; Teboul, B.; Marteu, A.; Guerin, O. A new application of smart walker for quantitative analysis of human walking. In Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; doi:10.1007/978-3-319-16199-0_ 33. [CrossRef] Jiménez, M.F.; Monllor, M.; Frizera, A.; Bastos, T.; Roberti, F.; Carelli, R. Admittance Controller with Spatial Modulation for Assisted Locomotion using a Smart Walker. J. Intell. Rob. Syst. 2019, 94, 621–637. [CrossRef] Yeoh, W.L.; Choi, J.; Loh, P.Y.; Saito, S.; Muraki, S. The effect of horizontal forces from a Smart Walker on gait and perceived exertion. Assistive Technol. 2020, 1–9. [CrossRef] [PubMed] Sato, W.; Tsuchida, Y.; Li, P.; Hasegawa, T.; Yamada, Y.; Uchiyama, Y. Identifying the Effects of Assistive and Resistive Guidance on the Gait of Elderly People Using a Smart Walker. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 198–203. [CrossRef] Weon, I.S.; Lee, S.G. Intelligent robotic walker with actively controlled human interaction. ETRI J. 2018, 40, 522–530. [CrossRef] Aguirre, A.; Sierra M, S.D.; Munera, M.; Cifuentes, C.A. Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices. IEEE Sens. J. 2020. [CrossRef] Brodie, M.A.D.; Beijer, T.R.; Canning, C.G.; Lord, S.R. Head and pelvis stride-to-stride oscillations in gait: Validation and interpretation of measurements from wearable accelerometers. Physiol. Meas. 2015, 36, 857–872. [CrossRef] Frizera, A.; Gallego, J.; Rocon de Lima, E.; Abellanas, A.; Pons, J.; Ceres, R. Online Cadence Estimation through Force Interaction in Walker Assisted Gait. In Proceedings of the ISSNIP Biosignals and Biorobotics Conference 2010, Vitoria, Brazil, 4–6 January 2010; pp. 1–5. Frizera Neto, A.; Gallego, J.A.; Rocon, E.; Pons, J.L.; Ceres, R. Extraction of user’s navigation commands from upper body force interaction in walker assisted gait. Biomed. Eng. Online 2010, 9, 1–16. [CrossRef] Marsan, T.; Thoreux, P.; Bourgain, M.; Rouillon, O.; Rouch, P.; Sauret, C. Biomechanical analysis of the golf swing: Methodological effect of angular velocity component on the identification of the kinematic sequence. Acta Bioeng. Biomech. 2019, 21, 115–120. [CrossRef] Vicon Motion Systems. NEXUS. 2020. Available online: https://www.vicon.com/software/nexus/ (accessed on 17 February 2021) Field, T.; Leibs, J.; Bowman, J. ROS Documentation—Rosbag. 2020. Available online: http://docs.ros.org/en/hydro/api/rosbag /html/ (accessed on 17 February 2021) Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [CrossRef] MathWorks. MATLAB R2018a at a Glance. 2018. Available online: https://la.mathworks.com/products/new_products/release 2018a.html (accessed on 17 February 2021) BTK Matlab Wrapper. Available online: http://biomechanical-toolkit.github.io/docs/Wrapping/Matlab/ (accessed on 22 October 2020). RStudio. RStudio. 2020. Available online: https://rstudio.com/ (accessed on 17 February 2021) Najafi, B.; Miller, D.; Jarrett, B.D.; Wrobel, J.S. Does footwear type impact the number of steps required to reach gait steady state? An innovative look at the impact of foot orthoses on gait initiation. Gait Posture 2010, 32, 29–33. [CrossRef] [PubMed] Lee, M.; Kim, S.; Park, S. Resonance-based oscillations could describe human gait mechanics under various loading conditions. J. Biomech. 2014, 47, 319–322. [CrossRef] [PubMed] Tang, A.; Cao, Q. Motion control of walking assistant robot based on comfort. Ind. Robot 2012, 39, 564–579. [CrossRef] Graham, J.E.; Fisher, S.R.; Bergés, I.M.; Kuo, Y.F.; Ostir, G.V. Walking Speed Threshold for Classifying Walking Independence in Hospitalized Older Adults. Phys. Ther. 2010, 90, 1591–1597. [CrossRef] [PubMed] Tudor-Locke, C.; Aguiar, E.J.; Han, H.; Ducharme, S.W.; Schuna, J.M.; Barreira, T.V.; Moore, C.C.; Busa, M.A.; Lim, J.; Sirard, J.R.; et al. Walking cadence (steps/min) and intensity in 21–40 year olds: CADENCE-adults. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 8. [CrossRef] Pervez, A.; Ryu, J. Safe physical human–robot interaction of mobility assistance robots: evaluation index and control. Robotica 2011, 29, 767–785. [CrossRef] Lockhart, T.E.; Woldstad, J.C.; Smith, J.L. Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics 2003, 46, 1136–1160. [CrossRef] Wert, D.M.; Brach, J.; Perera, S.; VanSwearingen, J.M. Gait Biomechanics, Spatial and Temporal Characteristics, and the Energy Cost of Walking in Older Adults With Impaired Mobility. Physical Therapy 2010, 90, 977–985. [CrossRef] Nadeau, S.; Betschart, M.; Bethoux, F. Gait Analysis for Poststroke Rehabilitation. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 265–276. [CrossRef] Aycardi, L.F.; Cifuentes, C.A.; Múnera, M.; Bayón, C.; Ramírez, O.; Lerma, S.; Frizera, A.; Rocon, E. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J. Neuroeng. Rehabil. 2019, 16, 15. [CrossRef] Manchola, M.D.S.; Mayag, L.J.A.; Munera, M.; Garcia, C.A.C. Impedance-based Backdrivability Recovery of a Lower-limb Exoskeleton for Knee Rehabilitation. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019; pp. 1–6. [CrossRef] Viteckova, S.; Kutilek, P.; de Boisboissel, G.; Krupicka, R.; Galajdova, A.; Kauler, J.; Lhotska, L.; Szabo, Z. Empowering lower limbs exoskeletons: State-of-the-art. Robotica 2018, 36, 1743–1756. [CrossRef] |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
19 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.publisher.place.spa.fl_str_mv |
Basel (Suiza) |
dc.source.spa.fl_str_mv |
https://doi.org/10.3390/ s21093242 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/3249/4/Evaluation%20of%20Physical%20Interaction%20during%20Walker-Assisted%20Gait%20with%20the%20AGoRA%20Walker%20Strategies%20Based%20on%20Virtual%20Mechanical%20Stiffness.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/3249/3/Portada%20Evaluation%20of%20Physical%20Interaction%20during%20Walker-Assisted%20Gait%20with%20the%20AGoRA%20Walker%20Strategies%20Based%20on%20Virtual%20Mechanical%20Stiffness.PNG https://repositorio.escuelaing.edu.co/bitstream/001/3249/5/Evaluation%20of%20Physical%20Interaction%20during%20Walker-Assisted%20Gait%20with%20the%20AGoRA%20Walker%20Strategies%20Based%20on%20Virtual%20Mechanical%20Stiffness.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/3249/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/3249/1/Evaluation%20of%20Physical%20Interaction%20during%20Walker-Assisted%20Gait%20with%20the%20AGoRA%20Walker%20Strategies%20Based%20on%20Virtual%20Mechanical%20Stiffness.pdf |
bitstream.checksum.fl_str_mv |
2d1819b0b60331d3953540ec059f252c 5a64ebd300b8226ed2feb91298a983ae 65e19ffdae71b6c94dcf67b94a4521d5 5a7ca94c2e5326ee169f979d71d0f06e 81abfd81a0979214324aad69b3219c67 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355599253569536 |
spelling |
Sierra M, Sergio D.fb086ffa7ce4a537ce69e18203277510Múnera, Marcela8047a30ff2499f8ae5a4e903871b8f95Provot, Thomasa84bc2cb9b879ed1ab78e3295dbcee15Bourgain, Maxime520876ed32ab00297d526c81403197a5Cifuentes, Carlos A.0b885a45437175ae12e5d0a6f598afc4GiBiome2024-09-05T21:50:29Z2024-09-05T21:50:29Z2021https://repositorio.escuelaing.edu.co/handle/001/32491424-8220Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/Smart walkers are commonly used as potential gait assistance devices, to provide physical and cognitive assistance within rehabilitation and clinical scenarios. To understand such rehabilitation processes, several biomechanical studies have been conducted to assess human gait with passive and active walkers. Several sessions were conducted with 11 healthy volunteers to assess three interaction strategies based on passive, low and high mechanical stiffness values on the AGoRA Smart Walker. The trials were carried out in a motion analysis laboratory. Kinematic data were also collected from the smart walker sensory interface. The interaction force between users and the device was recorded. The force required under passive and low stiffness modes was 56.66% and 67.48% smaller than the high stiffness mode, respectively. An increase of 17.03% for the hip range of motion, as well as the highest trunk’s inclination, were obtained under the resistive mode, suggesting a compensating motion to exert a higher impulse force on the device. Kinematic and physical interaction data suggested that the high stiffness mode significantly affected the users’ gait pattern. Results suggested that users compensated their kinematics, tilting their trunk and lower limbs to exert higher impulse forces on the device.Los andadores inteligentes se utilizan comúnmente como posibles dispositivos de asistencia a la marcha, para proporcionar asistencia física y cognitiva en escenarios clínicos y de rehabilitación. Para comprender estos procesos de rehabilitación, se han realizado varios estudios biomecánicos para evaluar la marcha humana con andadores pasivos y activos. Se llevaron a cabo varias sesiones con 11 voluntarios sanos para evaluar tres estrategias de interacción basadas en valores de rigidez mecánica pasiva, baja y alta en el andador inteligente AGoRA. Los ensayos se llevaron a cabo en un laboratorio de análisis de movimiento. También se recopilaron datos cinemáticos de la interfaz sensorial del andador inteligente. Se registró la fuerza de interacción entre los usuarios y el dispositivo. La fuerza requerida en los modos pasivo y de baja rigidez fue un 56,66 % y un 67,48 % menor que en el modo de alta rigidez, respectivamente. Se obtuvo un aumento del 17,03 % en el rango de movimiento de la cadera, así como la mayor inclinación del tronco, en el modo resistivo, lo que sugiere un movimiento de compensación para ejercer una mayor fuerza de impulso en el dispositivo. Los datos de interacción física y cinemática sugirieron que el modo de alta rigidez afectó significativamente el patrón de marcha de los usuarios. Los resultados sugirieron que los usuarios compensaron su cinemática, inclinando el tronco y las extremidades inferiores para ejercer mayores fuerzas de impulso en el dispositivo.19 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Basel (Suiza)https://doi.org/10.3390/ s21093242Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical StiffnessArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 21 No. 3242, 2021193242121SensorsDecker, L.M.; Cignetti, F.; Stergiou, N. Complexity and Human Gait. Rev. Andal. Med. Deport. 2010, 3, 2–12Vaughan, C.L. Theories of bipedal walking: An odyssey. J. Biomech. 2003, 36, 513–523. [CrossRef]Buchman, A.S.; Boyle, P.A.; Leurgans, S.E.; Barnes, L.L.; Bennett, D.A. Cognitive Function is Associated with the Development of Mobility Impairments in Community-Dwelling Elders. Am. J. Geriatr Psychiatry 2011, 19, 571–580. [CrossRef] [PubMed]World Bank Group. Disability Inclusion. 2019. Available online: https://www.worldbank.org/en/topic/disability (accessed on 17 February 2021)Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly. Wien. Klin. Wochenschr. 2017, 129, 81–95. [CrossRef]Cifuentes, C.A.; Frizera, A. Human-Robot Interaction Strategies for Walker-Assisted Locomotion. In Springer Tracts in Advanced Robotics; Springer International Publishing: Cham, Switzerland; Berlin, Germany, 2016; Volume 115, p. 105. [CrossRef]Khan, R.M. Mobility impairment in the elderly. InnovAiT Educ. Inspir. Gen. Pract. 2018, 11, 14–19. [CrossRef]Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1–19. [CrossRef]Carrera, I.; Moreno, H.A.; Sierra M, S.D.; Campos, A.; Múnera, M.; Cifuentes, C.A. Technologies for Therapy and Assistance of Lower Limb Disabilities: Sit to Stand and Walking. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; Chapter 4, pp. 43–66. [CrossRef]Martins, M.M.; Santos, C.P.; Frizera-Neto, A.; Ceres, R. Assistive mobility devices focusing on Smart Walkers: Classification and review. Rob. Autom. Syst. 2012, 60, 548–562. [CrossRef]Russell Esposito, E.; Schmidtbauer, K.A.; Wilken, J.M. Experimental comparisons of passive and powered ankle-foot orthoses in individuals with limb reconstruction. J. Neuroeng. Rehabil. 2018, 15, 111. [CrossRef]Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018, 13, 819–834. [CrossRef] [PubMed]Sierra, M.S.D.; Arciniegas, L.; Ballen-Moreno, F.; Gómez-Vargas, D.; Múnera, M.; Cifuentes, C.A. Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; pp. 67–93. [CrossRef]Mundt, M.; Batista, J.P.; Markert, B.; Bollheimer, C.; Laurentius, T. Walking with rollator: A systematic review of gait parameters in older persons. Eur. Rev. Aging Phys. Act. 2019, 16, 15. [CrossRef]Van der Loos, H.M.; Reinkensmeyer, D.J.; Guglielmelli, E. Rehabilitation and Health Care Robotics. In Springer Handbook of Robotics; Springer International Publishing: Cham, Switzerland; New York City, NY, USA, 2016; Chapter 64, pp. 1685–1728. [CrossRef]Cardona, M.; Solanki, V.K.; García Cena, C.E. Exoskeleton Robots for Rehabilitation and Healthcare Devices; SpringerBriefs in Applied Sciences and Technology; Springer: Singapore, 2020. [CrossRef]Belda-Lois, J.M.; Horno, S.M.D.; Bermejo-Bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos, A.; et al. Rehabilitation of gait after stroke: A review towards a top-down approach. J. Neuroeng. Rehabilitat. 2011, 8, 66. [CrossRef]Sheffler, L.R.; Chae, J. Technological Advances in Interventions to Enhance Poststroke Gait. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 305–323. [CrossRef] [PubMed]Sierra M, S.D.; Garzón, M.; Múnera, M.; Cifuentes, C.A. Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker. Sensors 2019, 19, 2897. [CrossRef] [PubMed]Martins, M.; Santos, C.; Frizera, A.; Ceres, R. A review of the functionalities of smart walkers. Med. Eng. Phys. 2015, 37, 917–928. [CrossRef] [PubMed]Scheidegger, W.M.; de Mello, R.C.; Sierra M, S.D.; Jimenez, M.F.; Munera, M.C.; Cifuentes, C.A.; Frizera-Neto, A. A Novel Multimodal Cognitive Interaction for Walker-Assisted Rehabilitation Therapies. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 905–910. [CrossRef]Page, S.; Saint-Bauzel, L.; Rumeau, P.; Pasqui, V. Smart walkers: An application-oriented review. Robotica 2017, 35, 1243–1262. [CrossRef]Baker, R. Gait analysis methods in rehabilitation. J. Neuroeng. Rehabil. 2006, 3, 1–10. [CrossRef]Nirenberg, M.; Vernon, W.; Birch, I. A review of the historical use and criticisms of gait analysis evidence. Sci. Justice 2018, 58, 292–298. [CrossRef]Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sports Med. Open 2018, 4, 24. [CrossRef]Shahabpoor, E.; Pavic, A. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies. Sensors 2017, 17, 2085. [CrossRef]Sprager, S.; Juric, M. Inertial Sensor-Based Gait Recognition: A Review. Sensors 2015, 15, 22089–22127. [CrossRef]Alkjær, T.; Larsen, P.K.; Pedersen, G.; Nielsen, L.H.; Simonsen, E.B. Biomechanical analysis of rollator walking. Biomed. Eng. Online 2006, 5, 1–7. [CrossRef]Wang, T.; Dune, C.; Merlet, J.P.; Gorce, P.; Sacco, G.; Robert, P.; Turpin, J.M.; Teboul, B.; Marteu, A.; Guerin, O. A new application of smart walker for quantitative analysis of human walking. In Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; doi:10.1007/978-3-319-16199-0_ 33. [CrossRef]Jiménez, M.F.; Monllor, M.; Frizera, A.; Bastos, T.; Roberti, F.; Carelli, R. Admittance Controller with Spatial Modulation for Assisted Locomotion using a Smart Walker. J. Intell. Rob. Syst. 2019, 94, 621–637. [CrossRef]Yeoh, W.L.; Choi, J.; Loh, P.Y.; Saito, S.; Muraki, S. The effect of horizontal forces from a Smart Walker on gait and perceived exertion. Assistive Technol. 2020, 1–9. [CrossRef] [PubMed]Sato, W.; Tsuchida, Y.; Li, P.; Hasegawa, T.; Yamada, Y.; Uchiyama, Y. Identifying the Effects of Assistive and Resistive Guidance on the Gait of Elderly People Using a Smart Walker. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 198–203. [CrossRef]Weon, I.S.; Lee, S.G. Intelligent robotic walker with actively controlled human interaction. ETRI J. 2018, 40, 522–530. [CrossRef]Aguirre, A.; Sierra M, S.D.; Munera, M.; Cifuentes, C.A. Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices. IEEE Sens. J. 2020. [CrossRef]Brodie, M.A.D.; Beijer, T.R.; Canning, C.G.; Lord, S.R. Head and pelvis stride-to-stride oscillations in gait: Validation and interpretation of measurements from wearable accelerometers. Physiol. Meas. 2015, 36, 857–872. [CrossRef]Frizera, A.; Gallego, J.; Rocon de Lima, E.; Abellanas, A.; Pons, J.; Ceres, R. Online Cadence Estimation through Force Interaction in Walker Assisted Gait. In Proceedings of the ISSNIP Biosignals and Biorobotics Conference 2010, Vitoria, Brazil, 4–6 January 2010; pp. 1–5.Frizera Neto, A.; Gallego, J.A.; Rocon, E.; Pons, J.L.; Ceres, R. Extraction of user’s navigation commands from upper body force interaction in walker assisted gait. Biomed. Eng. Online 2010, 9, 1–16. [CrossRef]Marsan, T.; Thoreux, P.; Bourgain, M.; Rouillon, O.; Rouch, P.; Sauret, C. Biomechanical analysis of the golf swing: Methodological effect of angular velocity component on the identification of the kinematic sequence. Acta Bioeng. Biomech. 2019, 21, 115–120. [CrossRef]Vicon Motion Systems. NEXUS. 2020. Available online: https://www.vicon.com/software/nexus/ (accessed on 17 February 2021)Field, T.; Leibs, J.; Bowman, J. ROS Documentation—Rosbag. 2020. Available online: http://docs.ros.org/en/hydro/api/rosbag /html/ (accessed on 17 February 2021)Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [CrossRef]MathWorks. MATLAB R2018a at a Glance. 2018. Available online: https://la.mathworks.com/products/new_products/release 2018a.html (accessed on 17 February 2021)BTK Matlab Wrapper. Available online: http://biomechanical-toolkit.github.io/docs/Wrapping/Matlab/ (accessed on 22 October 2020).RStudio. RStudio. 2020. Available online: https://rstudio.com/ (accessed on 17 February 2021)Najafi, B.; Miller, D.; Jarrett, B.D.; Wrobel, J.S. Does footwear type impact the number of steps required to reach gait steady state? An innovative look at the impact of foot orthoses on gait initiation. Gait Posture 2010, 32, 29–33. [CrossRef] [PubMed]Lee, M.; Kim, S.; Park, S. Resonance-based oscillations could describe human gait mechanics under various loading conditions. J. Biomech. 2014, 47, 319–322. [CrossRef] [PubMed]Tang, A.; Cao, Q. Motion control of walking assistant robot based on comfort. Ind. Robot 2012, 39, 564–579. [CrossRef]Graham, J.E.; Fisher, S.R.; Bergés, I.M.; Kuo, Y.F.; Ostir, G.V. Walking Speed Threshold for Classifying Walking Independence in Hospitalized Older Adults. Phys. Ther. 2010, 90, 1591–1597. [CrossRef] [PubMed]Tudor-Locke, C.; Aguiar, E.J.; Han, H.; Ducharme, S.W.; Schuna, J.M.; Barreira, T.V.; Moore, C.C.; Busa, M.A.; Lim, J.; Sirard, J.R.; et al. Walking cadence (steps/min) and intensity in 21–40 year olds: CADENCE-adults. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 8. [CrossRef]Pervez, A.; Ryu, J. Safe physical human–robot interaction of mobility assistance robots: evaluation index and control. Robotica 2011, 29, 767–785. [CrossRef]Lockhart, T.E.; Woldstad, J.C.; Smith, J.L. Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics 2003, 46, 1136–1160. [CrossRef]Wert, D.M.; Brach, J.; Perera, S.; VanSwearingen, J.M. Gait Biomechanics, Spatial and Temporal Characteristics, and the Energy Cost of Walking in Older Adults With Impaired Mobility. Physical Therapy 2010, 90, 977–985. [CrossRef]Nadeau, S.; Betschart, M.; Bethoux, F. Gait Analysis for Poststroke Rehabilitation. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 265–276. [CrossRef]Aycardi, L.F.; Cifuentes, C.A.; Múnera, M.; Bayón, C.; Ramírez, O.; Lerma, S.; Frizera, A.; Rocon, E. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J. Neuroeng. Rehabil. 2019, 16, 15. [CrossRef]Manchola, M.D.S.; Mayag, L.J.A.; Munera, M.; Garcia, C.A.C. Impedance-based Backdrivability Recovery of a Lower-limb Exoskeleton for Knee Rehabilitation. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019; pp. 1–6. [CrossRef]Viteckova, S.; Kutilek, P.; de Boisboissel, G.; Krupicka, R.; Galajdova, A.; Kauler, J.; Lhotska, L.; Szabo, Z. Empowering lower limbs exoskeletons: State-of-the-art. Robotica 2018, 36, 1743–1756. [CrossRef]info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbBiomecánicaBiomechanicsAparatos fisiológicosPhysiological apparatusTecnología de rehabilitaciónRehabilitation technologyInteracción físicaAndador inteligenteRigidez virtualInterfaz hápticaAnálisis de la marchaRobótica asistidaPhysical interactionSmart walkerVirtual stiffnessHaptic interfaceGait analysisAssistive roboticsTEXTEvaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker Strategies Based on Virtual Mechanical Stiffness.pdf.txtEvaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker Strategies Based on Virtual Mechanical Stiffness.pdf.txtExtracted texttext/plain72911https://repositorio.escuelaing.edu.co/bitstream/001/3249/4/Evaluation%20of%20Physical%20Interaction%20during%20Walker-Assisted%20Gait%20with%20the%20AGoRA%20Walker%20Strategies%20Based%20on%20Virtual%20Mechanical%20Stiffness.pdf.txt2d1819b0b60331d3953540ec059f252cMD54metadata only accessTHUMBNAILPortada Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker Strategies Based on Virtual Mechanical Stiffness.PNGPortada Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker Strategies Based on Virtual Mechanical Stiffness.PNGimage/png181491https://repositorio.escuelaing.edu.co/bitstream/001/3249/3/Portada%20Evaluation%20of%20Physical%20Interaction%20during%20Walker-Assisted%20Gait%20with%20the%20AGoRA%20Walker%20Strategies%20Based%20on%20Virtual%20Mechanical%20Stiffness.PNG5a64ebd300b8226ed2feb91298a983aeMD53open accessEvaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker Strategies Based on Virtual Mechanical Stiffness.pdf.jpgEvaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker Strategies Based on Virtual Mechanical Stiffness.pdf.jpgGenerated Thumbnailimage/jpeg16150https://repositorio.escuelaing.edu.co/bitstream/001/3249/5/Evaluation%20of%20Physical%20Interaction%20during%20Walker-Assisted%20Gait%20with%20the%20AGoRA%20Walker%20Strategies%20Based%20on%20Virtual%20Mechanical%20Stiffness.pdf.jpg65e19ffdae71b6c94dcf67b94a4521d5MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3249/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALEvaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker Strategies Based on Virtual Mechanical Stiffness.pdfEvaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker Strategies Based on Virtual Mechanical Stiffness.pdfapplication/pdf2410936https://repositorio.escuelaing.edu.co/bitstream/001/3249/1/Evaluation%20of%20Physical%20Interaction%20during%20Walker-Assisted%20Gait%20with%20the%20AGoRA%20Walker%20Strategies%20Based%20on%20Virtual%20Mechanical%20Stiffness.pdf81abfd81a0979214324aad69b3219c67MD51metadata only access001/3249oai:repositorio.escuelaing.edu.co:001/32492024-09-06 03:02:13.998metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |