Comparación entre regresión tipo LASSO y redes neuronales en la predicción del esfuerzo de fisuración y su elongación asociada del UHPFRC sometido a tracción directa

The purpose of this research is to model the direct traction behavior of ultra-high-performance fiber-reinforced (UHPFRC) concrete. For this analysis, LASSO-type regression methods and neural networks were used to predict the tension and elongation that cause the first crack in the concrete. The fol...

Full description

Autores:
Chaparro Ruiz, Diego Andrés
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
spa
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1324
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1324
Palabra clave:
Comportamiento a tracción directa
Redes neuronales artificiales
Regresión tipo LASSO
UHPFRC
Behavior to direct traction
Artificial neural networks
LASSO regression
UHPFRC
Rights
License
http://purl.org/coar/access_right/c_abf2